【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

【答案】1)證明見解析;(26.5;(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形.

【解析】試題分析:(1)根據(jù)平行線的性質(zhì)以及角平分線的性質(zhì)得出∠1=∠2,∠3=∠4,進(jìn)而得出答案;

2)根據(jù)已知得出∠2+∠4=∠5+∠6=90°,進(jìn)而利用勾股定理求出EF的長,即可得出CO的長;

3)根據(jù)平行四邊形的判定以及矩形的判定得出即可.

1)證明:∵M(jìn)N∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F,

∴∠2=∠5∠4=∠6,

∵M(jìn)N∥BC,

∴∠1=∠5,∠3=∠6

∴∠1=∠2,∠3=∠4

∴EO=CO,FO=CO,

∴OE=OF

2)解:∵∠2=∠5,∠4=∠6,

∴∠2+∠4=∠5+∠6=90°,

∵CE=12CF=5,

∴EF==13,

∴OC=EF=6.5

3)解:當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形.

證明:當(dāng)OAC的中點(diǎn)時(shí),AO=CO

∵EO=FO,

四邊形AECF是平行四邊形,

∵∠ECF=90°

平行四邊形AECF是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件下,不能判定ABC≌△A′B′C′是( )

A. A=A′,AB=AB′,BC=BC B. A=A′,C=C′,AC=AC

C. B=B′,C=C′,AC=AC D. BA=BA′,BC=BC′,AC=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教師節(jié)要到了,為了表示對老師的敬意小明做了兩張大小不同的正方形壁畫準(zhǔn)備送給老師,其中一張面積為800 cm2另一張面積為450 cm2,他想如果再用金彩帶把壁畫的邊鑲上會(huì)更漂亮,他現(xiàn)在有1.2 m長的金彩帶,請你幫助算一算他的金彩帶夠用嗎?如果不夠還需買多長的金彩帶?(1.414結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程方程(k﹣1)x2+4x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( 。
A.k<5
B.k<5,且k≠1
C.k≤5,且k≠1
D.k>5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買3個(gè)足球和2個(gè)籃球共需310元.購買2個(gè)足球和5個(gè)籃球共需500元.

(1)購買一個(gè)足球、一個(gè)籃球各需多少元?

(2)實(shí)驗(yàn)中學(xué)實(shí)際需要一次性購買足球和籃球共96個(gè).要求購買足球和籃球的總費(fèi)用不超過5800元,這所中學(xué)最多可以購買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CBy,y軸負(fù)半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點(diǎn)坐標(biāo);

(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)ADAC時(shí),ODA的角平分線與∠CAE的角平分線的反向延長線交于點(diǎn)P,求∠APD的度數(shù).

(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),DMADBCM點(diǎn),BMD、DAO的平分線交于N點(diǎn),D點(diǎn)在運(yùn)動(dòng)過程中,N的大小是否變化?若不變,求出其值,若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

20

30

售價(jià)(元/件)

29

40

(1)新瑪特購物中心將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(2)該購物中心第二次以第一次的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E.
(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點(diǎn)G.若BF=FC=1,試求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延長CA到O,使AO=AC,以O(shè)為圓心,OA長為半徑作⊙O交BA延長線于點(diǎn)D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案