【題目】定義:若存在實數(shù)對坐標(biāo)(x,y)同時滿足一次函數(shù)y=px+q和反比例函數(shù)y=,則二次函數(shù)y=px2+qxk為一次函數(shù)和反比例函數(shù)的“聯(lián)姻”函數(shù).
(1)試判斷(需要寫出判斷過程):一次函數(shù)y=x+3和反比例函數(shù)y=是否存在“聯(lián)姻”函數(shù),若存在,寫出它們的“聯(lián)姻”函數(shù)和實數(shù)對坐標(biāo).
(2)已知:整數(shù)m,n,t滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y=存在“聯(lián)姻”函數(shù)y=(m+t)x2+(10mt)x2015,求m的值.
(3)若同時存在兩組實數(shù)對坐標(biāo)[x1,y1]和[x2,y2]使一次函數(shù)y=ax+2b和反比例函數(shù)y=為“聯(lián)姻”函數(shù),其中,實數(shù)a>b>c,a+b+c=0,設(shè),求L的取值范圍.
【答案】(1)存在,實數(shù)對坐標(biāo)為(1,2),(2,1);(2) m=2;(3) <L<2.
【解析】
(1)只需將y=x+3與y=組成方程組,并求出該方程組的解即可解決問題;
(2)根據(jù)題意得,解得.然后根據(jù)t<n<8m求出n的取值范圍,進而求出m的取值范圍,就可求出整數(shù)m的值;
(3)由a>b>c,a+b+c=0可得a>0,c<0,a>ac,ac>c,即可得到(2b)24ac>0,2<<12,由題可得x1+x2=2ba,x1x2=,從而得到
===2,利用二次函數(shù)的增減性并結(jié)合2<<即可得到L的取值范圍.
(1)聯(lián)立,
解得或.
則一次函數(shù)y=x+3和反比例函數(shù)y=存在“聯(lián)姻”函數(shù),它們的“聯(lián)姻”函數(shù)為y=x2+3x2,實數(shù)對坐標(biāo)為(1,2),(2,1);
(2)根據(jù)題意得:,
解得.
∵t<n<8m,
∴
解得6<n<24,
∴9<n+3<27,
∴1< <3,
∴1<m<3.
span>∵m是整數(shù),
∴m=2;
(3)∵a>b>c,a+b+c=0,
∴a>0,c<0,a>ac,ac>c,
∴(2b)24ac>0,2<<
∴方程ax2+2bx+c=0有兩個不相等的實根.
由題可得:x1、x2是方程ax+2b=cx即ax2+2bx+c=0的兩個不等實根.
∴x1+x2=,x1x2=,
∴L= L=|x1x2|=
=
==
=
=,
∵2<<,
∴<L<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CA=12cm,BC=12cm;動點P從點C開始沿CA以2cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BC以 2cm/s的速度向點C移動.如果P、Q、R分別從C、A、B同時移動,移動時間為t(0<t<6)s.
(1)∠CAB的度數(shù)是 ;
(2)以CB為直徑的⊙O與AB交于點M,當(dāng)t為何值時,PM與⊙O相切?
(3)寫出△PQR的面積S隨動點移動時間t的函數(shù)關(guān)系式,并求S的最小值及相應(yīng)的t值;
(4)是否存在△APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,以 BC 為直徑的⊙O 交 AB 于點 D,過點 D 作∠ADE=∠A,交 AC 于點 E.
(1)求證:DE 是⊙O 的切線;
(2)若 ,BC=15cm,求 DE 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 y x2 bx c 的圖象與 x 軸交于 A1, 0 、 B 4, 0 兩點, 與 y 軸交于點C ,拋物線的對稱軸與 x 軸交于點 D ,點 M 從O 點出發(fā),以每秒 1 個單位長度的速度向 B 點運動(運動到 B 點停止),過點 M 作 x 軸的垂線,交拋物線于點 P ,交 BC 與點Q .
(1)求拋物線的解析式;
(2)設(shè)當(dāng)點 M 運動了t (秒)時,四邊形OBPC 的面積為 S ,求 S 與t 的函數(shù)關(guān)系式,并指出自變量t 的取值范圍;
(3)在線段 BC 上是否存在點Q ,使得DBQ 成為等腰三角形?若存在,求出點Q 的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實數(shù)根;③a-b+c≥0;④的最小值為3,其中正確結(jié)論的個數(shù)是( )
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個二次函數(shù)圖象的頂點,開口方向都相同,則稱這兩個二次函數(shù)為“同簇二次函數(shù)”.
(1)請寫出兩個為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2-4mx+2m2+1和y2=ax2+bx+2m2+5,其中y1的圖象經(jīng)過點A(1,1),y3=y1+y2,若y3與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達式,并求出當(dāng)0≤x≤3時,y2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.
(1)是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;
(2)求使﹣2的值為整數(shù)的實數(shù)k的整數(shù)值;
(3)若k=﹣2,λ=,試求λ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標(biāo)是1.
(1) 求P點坐標(biāo)及a的值;
(2)如圖(1),
拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當(dāng)點P、M關(guān)于點B成中心對稱時,求C3的解析式;
(3) 如圖(2),
點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當(dāng)以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com