已知m﹣n=100,x+y=﹣1,則代數(shù)式(n+x)﹣(m﹣y)的值是( 。

A.99     B.101   C.﹣99 D.﹣101


D【考點】整式的加減—化簡求值.

【專題】計算題;整式.

【分析】原式去括號整理后,將已知等式代入計算即可求出值.

【解答】解:∵m﹣n=100,x+y=﹣1,

∴原式=n+x﹣m+y=﹣(m﹣n)+(x+y)=﹣100﹣1=﹣101.

故選D.

【點評】此題考查了整式的加減﹣化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB是⊙O的直徑,C、D是⊙O上的點,∠CDB=20°,過點C作⊙O的切線交AB的延長線于點E,則∠E=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


設(shè)邊長為2a的正方形的中心A在直線l上,它的一組對邊垂直于直線l,半徑為r的⊙O的圓心O在直線l上運動,點A、O間距離為d.

(1)如圖①,當r<a時,根據(jù)d與a、r之間關(guān)系,將⊙O與正方形的公共點個數(shù)填入下表:

d、a、r之間關(guān)系

公共點的個數(shù)

d>a+r

d=a+r

a﹣r<d<a+r

d=a﹣r

d<a﹣r

所以,當r<a時,⊙O與正方形的公共點的個數(shù)可能有   個;

(2)如圖②,當r=a時,根據(jù)d與a、r之間關(guān)系,將⊙O與正方形的公共點個數(shù)填入下表:

d、a、r之間關(guān)系

公共點的個數(shù)

d>a+r

d=a+r

a≤d<a+r

d<a

所以,當r=a時,⊙O與正方形的公共點個數(shù)可能有   個;

(3)如圖③,當⊙O與正方形有5個公共點時,試說明r=a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜邊都在坐標軸上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4…=30°.若點A1的坐標為(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,則依次規(guī)律,點A2016的縱坐標為( 。

A.0       B.﹣3×(2015   C.(22016    D.3×(2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB、CD、EF、MN均為直線,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,則∠1=( 。

A.35°   B.40°    C.45°   D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.

(1)使用a、c表示b;

(2)判斷點B所在象限,并說明理由;

(3)若直線y2=2x+m經(jīng)過點B,且與該拋物線交于另一點C(),求當x≥1時y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


二次函數(shù)y=(x﹣1)2+1,當2≤y<5時,相應(yīng)x的取值范圍為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某過天橋的設(shè)計圖是梯形ABCD(如圖所示),橋面DC與地面AB平行,DC=62米,AB=88米.左斜面AD與地面AB的夾角為23°,右斜面BC與地面AB的夾角為30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求橋面DC與地面AB之間的距離(精確到0.1米)sin23°=0.3907,cos23°=0.9205,tan23°=0.4245

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知點P(3﹣m,m﹣1)在第二象限,則m的取值范圍在數(shù)軸上表示正確的是( 。

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案