【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設A港和B港相距x千米.根據(jù)題意,可列出的方程是(。

A.B.

C.D.

【答案】A

【解析】

輪船沿江從A港順流行駛到B港,則由B港返回A港就是逆水行駛,由于船速為26千米/時,水速為2千米/時,則其順流行駛的速度為26228千米/時,逆流行駛的速度為:26224千米/時.根據(jù)輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,得出等量關系:輪船從A港順流行駛到B港所用的時間=它從B港返回A港的時間3小時,據(jù)此列出方程即可.

解:設A港和B港相距x千米,

由題意可得:,

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了促進學生體育鍛煉,某校八年級進行了體育測試,為了解女生體育測試情況,從中抽取了若干名女生的體育測試成績.

a.體育委員小李在整理頻數(shù)分布表時,不小心污染了統(tǒng)計表:

分組(分)

頻數(shù)

頻數(shù)

21x≤22

8

0.200

22x≤23

4

n

23x≤24

7

0.175

24x≤25

3

0.075

25x≤26

2

0.050

26x≤27

8

0.200

27x≤28

m

0.150

28x≤29

2

0.050

合計

b.根據(jù)頻數(shù)分布表,繪制如下頻數(shù)分布直方圖:

c.在此次測試中,共測試了800米,籃球,仰臥起坐,成績統(tǒng)計如下:

項目

平均分

中位數(shù)

眾數(shù)

800

8.27

8.5

8.5

仰臥起坐

7.61

8

7.5

籃球

8.69

9

8

根據(jù)以上信息,回答下列問題:

1)寫出表中m,n的值;

2)補全直方圖;

3)請結合C中統(tǒng)計圖表,給該校女生體育訓練提供建議(至少從兩個不同的角度分析).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,射線OC∠A0B的內部,圖中共有3個角:∠AOB、∠AOC∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC∠AOB定分線

1)一個角的平分線______這個角的定分線;(填不是

2)如圖2,若∠MPN= ,且射線PQ∠MPN定分線,則∠MPQ=_____(用含a的代數(shù)式表示出所有可能的結果)

3)如圖2,若∠MPN=45°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉,當PQPN90°時停止旋轉,旋轉的時間為t.同時射線PM繞點P以每秒的速度逆時針旋轉,并與PQ同時停止.PQ∠MPN定分線”時,求t的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDAB,EFAB,垂足分別為D、F,∠1=∠2,

(1)試判斷DGBC的位置關系,并說明理由.

(2)若∠A70°,∠B40°,求∠AGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上有A、BC、DO五個點,O為原點C在數(shù)軸上表示的數(shù)是5,線段CD的長度為4個單位線段AB的長度為2個單位,B、C兩點之間的距離為11個單位,請解答下列問題

1D在數(shù)軸上表示的數(shù)是 ,A在數(shù)軸上表示的數(shù)是 ;

2若點B以每秒2個單位的速度向右勻速運動t秒運動到線段CD,BC的長度是3個單位根據(jù)題意列出的方程是 ,解得t= ;

3若線段AB、CD同時從原來的位置出發(fā),線段AB以每秒2個單位的速度向右勻速運動,線段CD以每秒3個單位的速度向左勻速運動,把線段CD的中點記作P,請直接寫出,P與線段AB的一個端點的距離為1.5個單位時運動的時間

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點E,F之間距離是10cm,AB,CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃設花圃的一邊AB為xm,面積為ym2

(1)求y與x的函數(shù)關系式;

(2)如果要圍成面積為63m2的花圃,AB的長是多少?

(3)能圍成比63m2更大的花圃嗎?如果能,請求出最大面積;如果不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下證明過程:

已知:在△ABC中,∠C≠90°,設AB=c,AC=b,BC=a.求證:a2+b2c2

證明:假設a2+b2=c2,則由勾股定理逆定理可知∠C=90°,這與已知中的∠C≠90°矛盾,故假設不成立,所以a2+b2c2

請用類似的方法證明以下問題:

已知:關于x的一元二次方程x2﹣(m+1)x+2m-3=0 有兩個實根x1x2

求證:x1x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一種西裝和領帶,西裝每套定價500元,領帶每條定價100元.元旦甲、乙兩商家促銷打折

甲商場:買一套西裝送一條領帶;

乙商場:西裝和領帶都按定價的付款.

現(xiàn)某客戶要購買西裝10套,領帶

1)若該客戶去甲商場購買,需付款多少元?(用含的代數(shù)式表示)若該客戶去乙商場購買,需付款多少元?(用含的代數(shù)式表示)

2)若等于20,通過計算說明此時去哪家商場買更合算?

3)當時,你能給出一種更為省錢的購買方案嗎?

查看答案和解析>>

同步練習冊答案