【題目】已知關于x的方程x2-(k+1)x+k2+1=0
(1) 當k取何值方程有兩個實數(shù)根
(2) 是否存在k值使方程的兩根為一個矩形的兩鄰邊長,且矩形的對角線長為
【答案】(1)k≥; (2)2.
【解析】
(1)根據(jù)判別式是非負數(shù),這樣就可以確定k的取值范圍;
(2)設方程的兩根為x1,x2,依題意x12+x22=5,又根據(jù)根與系數(shù)的關系可以得到x1+x2=k+1,x1x2=k2+1,而x12+x22=(x1+x2)2-2x1x2,這樣利用這些等式變形即可求解.
解:(1) ∵△=[-(k+1)]2-4×(k2+1)=2k-3≥0,
∴k≥;
(2) 設方程的兩根為x1、x2,
∴x12+x22=5,
∵x1+x2=k+1,x1x2=k2+1,
∴x12+x22=(x1+x2)2-2x1x2=(k+1)2-2×(k2+1)=5,解得k1=-6,k2=2,
∵x1+x2=k+1>0,
∴k>-1,
∴k=2.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D是△ABC內(nèi)一點,連接AD,BD.在BD左側作Rt△BDE,使∠BDE=90°,以AD和DE為鄰邊作ADEF,連接CD,DF.
(1)若AC=BC,BD=DE.
①如圖1,當B,D,F三點共線時,CD與DF之間的數(shù)量關系為 .
②如圖2,當B,D,F三點不共線時,①中的結論是否仍然成立?請說明理由.
(2)若BC=2AC,BD=2DE,,且E,C,F三點共線,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB.
(1)求∠APB的大。
(2)說明線段AC、CD、BD之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?
(2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,∠B=30°.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC;則下列結論:①abc<0;②>0;③ac-b+1=0;④OAOB=-.其中正確的結論( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).
(1)求拋物線的解析式;
(2)如圖,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在線段AB上找一點C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BC·AB=AC2,那么稱線段AB被點C黃金分割。
為了增加美感,黃金分割經(jīng)常被應用在繪畫、雕塑、音樂、建筑等藝術領域。如圖2,在我國古代紫禁城的中軸線上,太和門位于太和殿與內(nèi)金水橋之間靠近內(nèi)金水橋的一側,三個建筑的位置關系滿足黃金分割,已知太和殿到內(nèi)金水橋的距離約為100丈,求太和門到太和殿之間的距離(的近似值取2.2)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點(﹣2,0),對稱軸為直線x=1.有以下結論:
①abc>0;
②8a+c>0;
③若A(x1,m),B(x2,m)是拋物線上的兩點,當x=x1+x2時,y=c;
④點M,N是拋物線與x軸的兩個交點,若在x軸下方的拋物線上存在一點P,使得PM⊥PN,則a的取值范圍為a≥1;
⑤若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.
其中結論正確的有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com