【題目】如圖,已知直線與x軸,y軸分別交于點A,B,將△ABO沿直線AB翻折后得到△ABC,若反比例函數(shù)(x<0)的圖象經(jīng)過點C,則k=______.
【答案】
【解析】
先由直線解析式求出A、B兩點坐標(biāo),進(jìn)而得到∠A、∠B的度數(shù),連接OC交AB于D,求出OD的長,由軸對稱性可得OC 的長,過C作CE⊥x軸于點E,通過解直角三角形求出OE、CE的長即可.
對于,當(dāng)x=0時,y=2;當(dāng)y=0時,x=-2,
∴A(-2,0),B(0,2)
∴AO=2,OB=2,
∴tan∠OAB=,
∴∠OAB=30°
∴∠OBA=60°,
連接OC,過點C作CE⊥x軸,垂足為E,
由翻折得,OD⊥AB,OD=CD,
∴OD=OA=,∠AOD=60°,
∴OC=2,∠OCE=30°
∴OE=OC=,
∴CE=
∴C(-,3)
∴k=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推動實施健康中國戰(zhàn)略,樹立國家健康形象.手機(jī)APP推出多款健康運動軟件,如“微信運動”.王老師隨機(jī)調(diào)查了我校50名教師某日“微信運動”中的步數(shù),并進(jìn)行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表.
步數(shù) | 頻數(shù) | 頻率 |
8 | ||
15 | 0.3 | |
0.24 | ||
10 | 0.2 | |
3 | 0.06 | |
2 | 0.04 | |
合計 | 50 |
請根據(jù)以上信息,解答下列問題:
(1)_______,_______,________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若某人一天的走路步數(shù)不低于16000步,將被“微信運動”評為“運動達(dá)人”.我市市區(qū)約有4000名初中教師,根據(jù)此項調(diào)查請估計市區(qū)被評為“運動達(dá)人”教師有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,消毒液、口罩成為了咱們的生活必需品.淘寶某醫(yī)用器械藥房推出種口罩進(jìn)行銷售,醫(yī)用一次性口罩元個,醫(yī)用外科口罩元個.
(1)學(xué)校為做好開學(xué)復(fù)課準(zhǔn)備,提前購進(jìn)兩種口罩個,共花費元,請問學(xué)校購買醫(yī)用外科口罩多少個?
(2)因為月份疫情逐漸過去,各地開始復(fù)工復(fù)產(chǎn),口罩的市場需求量依舊旺盛,該藥房決定用元再次購進(jìn)一批口罩進(jìn)行銷售.醫(yī)用一次性口罩個盒,每盒元,醫(yī)用外科口罩個盒,每盒元.要求購進(jìn)的醫(yī)用外科口罩個數(shù)不超過醫(yī)用一次性口罩的倍,但不低于醫(yī)用一次性口罩的倍.若這批口罩全部銷售完畢,為使獲利最大,該藥房應(yīng)如何進(jìn)貨?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B在x軸上,點C在y軸上,AB=BC=5,AC=8,D為線段AB上一動點,以CD為邊在x軸上方作正方形CDEF,連接AE.
(1)若點B的坐標(biāo)為(m,0),則m= ;
(2)當(dāng)BD= 時,EA⊥x軸;
(3)當(dāng)點D由點B運動到點A過程中,點F經(jīng)過的路徑長為 ;
(4)當(dāng)△ADE面積最大時,求出BD的長及△ADE面積最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市以20元/kg的價格購進(jìn)一批商品進(jìn)行銷售,根據(jù)以往的銷售經(jīng)驗及對市場行情的調(diào)研,該超市得到日銷售量y(kg)與銷售價格x(元/kg)之間的關(guān)系,部分?jǐn)?shù)據(jù)如下表:
銷售價格x(元/kg) | 25 | 30 | 35 | 40 | … |
日銷售量y(kg) | 1000 | 800 | 600 | 400 | … |
(1)根據(jù)表中的數(shù)據(jù),用所學(xué)過的函數(shù)知識確定y與x之間的函數(shù)關(guān)系式;
(2)超市應(yīng)如何確定銷售價格,才能使日銷售利潤W(元)最大?W最大值為多少?
(3)供貨商為了促銷,決定給予超市a元/kg的補(bǔ)貼,但希望超市在30≤x≤35時,最大利潤不超過10240元,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:;
(3)若,,求線段DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,點D在AB的延長線上,且∠BCD∠A.
(1)求證:CD是⊙O的切線;
(2)若AC2,ABCD,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點E是AD的中點,過點A作AF∥BC交BE的延長線于F,BF交AC于G,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,①試判斷四邊形ADCF的形狀,并證明你的結(jié)論;
②若AB=8,BD=5,直接寫出線段AG的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com