【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=-2x+m的圖象交于A、B兩點,AC⊥x軸于C, △AOC的面積為3.

(1)根據(jù)這些條件,試確定反比例函數(shù)的解析式;

(2)根據(jù)這些條件,你能求出一次函數(shù)的關系式嗎?如果能請你求出來;如果不能,請你添加一個條件,求出一次函數(shù)的關系式.(注意:不能添加m的值);

(3)根據(jù)你所求出的一次函數(shù)的關系式,求出△AOD的面積.

【答案】(1)y=;(2)(3)見解析

【解析】

根據(jù)一次函數(shù)和反比例函數(shù)圖象的性質(zhì)求關系式.

A(a、b)是一次函數(shù)y=x+m的圖象與反比例函數(shù)的圖象在第一象限的交點,且SAOC =3,

根據(jù)一次函數(shù)和反比例函數(shù)圖象的性質(zhì)及直角三角形面積公式可得k=ab=6,m的值不能確定.

故(1)反比例函數(shù)的解析式為y=.

(2)不能夠求出一次函數(shù)的函數(shù)關系式.只知道一次函數(shù)圖象上的一個點橫縱坐標乘積,無法求出點的坐標,就無法求出解析式.添加B點的坐標(3,-2),則y=-2x+4.

(3)根據(jù)上題可求出A點坐標為(-1,6),求得AOD的面積為OD×CO×=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA

與⊙O的另一個交點為E,連結AC,CE

1)求證:B=D;

2)若AB=4,BC-AC=2,求CE的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形ABCD的邊長是4,∠ABC=120°,點M、N分別在邊AD、AB上,且MN⊥AC,垂足為P,把△AMN沿MN折疊得到△AˊMN,若△AˊDC恰為等腰三角形,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關系如圖所示.根據(jù)圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時間相同,已知乙種污水處理器每小時比甲種污水處理器多處理20噸的污水.

1)分別求甲、乙兩種污水處理器的污水處理效率;

2)若某廠每天同時開甲、乙兩種污水處理器處理污水共4小時,且甲、乙兩種污水處理器處理污水每噸需要的費用分別30元和50元,問該廠每個月(以30天計)需要污水處理費多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)ykx+2的圖象經(jīng)過點A,且yx的增大而減。畡tA點的坐標可以是(  )

A.2,5B.(﹣1,1C.3,0D.,4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸是x=-4,拋物線與x軸交于A,B兩點,與y軸交于C點,O是坐標原點,且A,C的坐標分別是(-2,0),(0,3).

(1)求拋物線的解析式;

(2)拋物線上有一點是P,滿足∠PBC=90,求P點的坐標;

(3)y軸上是否存在點E使得△AOE與△PBC相似?若存在求出點E的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是三邊都不相等的三角形,點O和點P是這個三角形內(nèi)部兩點.
1)如圖①,如果點P是這個三角形三個內(nèi)角平分線的交點,那么∠BPC和∠BAC有怎樣的數(shù)量關系?請說明理由;
2)如圖②,如果點O是這個三角形三邊垂直平分線的交點,那么∠BOC和∠BAC有怎樣的數(shù)量關系?請說明理由;
3)如圖③,如果點P(三角形三個內(nèi)角平分線的交點),點O(三角形三邊垂直平分線的交點)同時在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關系?請直接回答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個鋁質(zhì)的三角形框架的三邊長分別為24 cm,30 cm,36 cm,要做一個與它相似的鋁質(zhì)三角形的框架,現(xiàn)有長27 cm,45 cm的兩根鋁材,要求以其中的一根為邊,從另一根上截下兩段(允許有余材),則截法有______種.

查看答案和解析>>

同步練習冊答案