【題目】(問(wèn)題)如圖①,點(diǎn)D是∠ABC的角平分線BP上一點(diǎn),連接AD,CD,若∠A與∠C互補(bǔ),則線段AD與CD有什么數(shù)量關(guān)系?
(探究)
探究一:如圖②,若∠A=90°,則∠C=180°﹣∠A=90°,即AD⊥AB,CD⊥BC,又因?yàn)?/span>BD平分∠ABC,所以AD=CD,理由是: .
探究二:若∠A≠90°,請(qǐng)借助圖①,探究AD與CD的數(shù)量關(guān)系并說(shuō)明理由.
[理論]點(diǎn)D是∠ABC的角平分線BP上一點(diǎn),連接AD,CD,若∠A與∠C互補(bǔ),則線段AD與CD的數(shù)量關(guān)系是 .
[拓展]已知:如圖③,在△ABC中,AB=AC,∠A=100°,BD平分∠ABC.
求證:BC=AD+BD
【答案】【探究】探究一:角平分線上的點(diǎn)到角的兩邊的距離相等;探究二: AD=CD,理由詳見(jiàn)解析;【理論】AD=CD;【拓展】詳見(jiàn)解析
【解析】
探究一:根據(jù)角平分線的性質(zhì)定理解答;
探究二:作DF⊥BC于F,作DE⊥AB交BA的延長(zhǎng)線于E,證明△DAE≌△DCF,根據(jù)全等三角形的性質(zhì)證明結(jié)論;
[理論]根據(jù)探究結(jié)果得到答案;
[拓展]在BC上取一點(diǎn)E,使BE=BD,利用等腰三角形的性質(zhì),結(jié)合前面的結(jié)論得到DE=AD,通過(guò)證明得出CE=DE=AD即可證明結(jié)論.
解:探究一:∵BD平分∠ABC,AD⊥AB,CD⊥BC,
∴AD=CD,
理由是:角平分線上的點(diǎn)到角的兩邊的距離相等,
故答案為:角平分線上的點(diǎn)到角的兩邊的距離相等;
探究二:AD=CD.
理由:作DF⊥BC于F,作DE⊥AB交BA的延長(zhǎng)線于E,
∵BD平分∠ABC,DE⊥AB,DF⊥BC,
∴DE=DF,
∵∠BAD+∠DAE=180°,∠BAD+∠C=180°,
∴∠DAE=∠C,
在△DAE和△DCF中,
,
∴△DAE≌△DCF(AAS)
∴AD=CD,
故答案為:AD=CD;
[理論]綜上所述,點(diǎn)D是∠ABC的角平分線BP上一點(diǎn),連接AD,CD,若∠A與∠C互補(bǔ),則線段AD與CD的數(shù)量關(guān)系是AD=CD,
故答案為:AD=CD;
[拓展]在BC上取一點(diǎn)E,使BE=BD,
∴∠BDE=∠BED,
∵在△ABC中,AB=AC,
∴∠ABC=∠C=(180°-∠A)=40°,
∵BD平分∠ABC,
∴∠EBD=∠ABC=20°,
∴∠BDE=∠BED=(180°-∠EBD)=80°,
∴∠BED+∠A=180°,
∴由前面的結(jié)論,DE=AD,
又∵∠CDE=∠BED-∠C=40°=∠C,
∴CE=DE=AD,
∴BC=BE+EC=AD+BD,
即BC=AD+BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列一段文字,再解答問(wèn)題:
已知在平面內(nèi)有兩點(diǎn),,其兩點(diǎn)間的距離公式為;同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡(jiǎn)化為或.
(1)已知點(diǎn)A(2,4),B(-2,1),則AB=__________;
(2)已知點(diǎn)C,D在平行于y軸的直線上,點(diǎn)C的縱坐標(biāo)為4,點(diǎn)D的縱坐標(biāo)為-2,則CD=__________;
(3)已知點(diǎn)P(3,1)和(1)中的點(diǎn)A,B,判斷線段PA,PB,AB中哪兩條線段的長(zhǎng)是相等的?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小亮一家在東昌湖游玩,媽媽在湖心島岸邊P處觀看小亮與爸爸在湖中劃船(如圖).小船從P處出發(fā),沿北偏東60°劃行200米到達(dá)A處,接著向正南方向劃行一段時(shí)間到達(dá)B處.在B處小亮觀測(cè)媽媽所在的P處在北偏西37°方向上,這時(shí)小亮與媽媽相距多少米(精確到米)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣+bx+c與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)如圖1,、分別平分、.試說(shuō)明:;
(2)如圖2,若,,、分別平分、,那么 (只要直接填上正確結(jié)論即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有三點(diǎn)。
(1)連接,若
①線段的長(zhǎng)為 (直接寫出結(jié)果)
②如圖1,點(diǎn)為軸負(fù)半軸上一點(diǎn),點(diǎn)為線段上一點(diǎn),連接作,且,當(dāng)點(diǎn)從向運(yùn)動(dòng)時(shí),點(diǎn)不變,點(diǎn)隨之運(yùn)動(dòng),連接,求線段的中點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng);
(2)如圖2,作,連接并延長(zhǎng),交延長(zhǎng)線于于.若,且,在平面內(nèi)是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)為直線上一點(diǎn),過(guò)點(diǎn)作射線,使,將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊在直線的下方,其中.
(1)將圖1中的三角尺繞點(diǎn)順時(shí)針旋轉(zhuǎn)至圖2,使一邊在的內(nèi)部,且恰好平分,求的度數(shù);
(2)將圖1中三角尺繞點(diǎn)按每秒10的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,旋轉(zhuǎn)過(guò)程中,在第 秒時(shí),邊恰好與射線平行;在第 秒時(shí),直線恰好平分銳角.
(3)將圖1中的三角尺繞點(diǎn)順時(shí)針旋轉(zhuǎn)至圖3,使在的內(nèi)部,請(qǐng)?zhí)骄?/span>與之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.
(1)仿照以上方法計(jì)算:=______;=_____.
(2)若,寫出滿足題意的x的整數(shù)值______.
如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2次 =1,這時(shí)候結(jié)果為1.
(3)對(duì)100連續(xù)求根整數(shù),____次之后結(jié)果為1.
(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線的解析式為,它與坐標(biāo)軸分別交于A,B兩點(diǎn).
(1)求出點(diǎn)A的坐標(biāo);
(2)動(dòng)點(diǎn)C從y軸上的點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向y軸負(fù)半軸運(yùn)動(dòng),求出點(diǎn)C運(yùn)動(dòng)的時(shí)間t,使得為等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com