【題目】如圖,在△ABC中,ABAC,DBC中點,點EBA延長線上一點,點FAC上一點,連接EF并延長交BC于點G,且AEAF

1)若∠ABC50°.求∠AEF的度數(shù);

2)求證:ADEG

【答案】1)∠AEF40°;(2)證明見解析.

【解析】

1)根據(jù)等腰三角形的性質(zhì)可得ADBC,AD平分∠BAC,再根據(jù)外角的性質(zhì)即可求出∠AEF的度數(shù);

2)根據(jù)角平分線的定義和外角的定義,可得∠AEF=∠BAD,進(jìn)而可證明ADEG

1)∵ABAC,

∴∠ABC=∠C50°

∴∠BAC180°50°50°80°,

DBC中點,

ADBCAD平分∠BAC,

∴∠BAD=∠CADBAC×80°40°,

AEAF,

∴∠E=∠AFE,

∵∠BAC=∠BAD+CAD=∠E+AFE,

∴∠AEF=∠BAD40°;

2)證明:∵AD平分∠BAC,

∴∠BAD=∠CADBAC,

AEAF,

∴∠E=∠AFE,

∵∠BAC=∠BAD+CAD=∠E+AFE

∴∠AEF=∠BAD,

ADEG

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時間不低于1小時.為了解這項政策的落實情況,有關(guān)部門就“你某天在校體育活動時間是多少”的問題,在某校隨機抽查了部分學(xué)生,再根據(jù)活動時間(小時進(jìn)行分組(A組:,B組:,C組:,D組:,繪制成如下兩幅統(tǒng)計圖,請根據(jù)圖中信息回答問題:

(1此次抽查的學(xué)生數(shù)為________人;

(2補全條形統(tǒng)計圖;

(3從抽查的學(xué)生中隨機詢問一名學(xué)生,該生當(dāng)天在校體育活動時間低于1小時的概率是__________;

(4若當(dāng)天在校學(xué)生數(shù)為1200人,請估計在當(dāng)天達(dá)到國家規(guī)定體育活動時間的學(xué)生有__________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在一條直線上,,,

1)求證:

2)若°,求的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲分為三等分?jǐn)?shù)字轉(zhuǎn)盤,乙為四等分?jǐn)?shù)字轉(zhuǎn)盤,自由轉(zhuǎn)動轉(zhuǎn)盤.

(1)轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3的概率是   ;

(2)同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,用列舉的方法求兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家住重慶兩相鄰小區(qū)的小明和小華在一次數(shù)學(xué)課后,進(jìn)行了一次數(shù)學(xué)實踐活動.如圖,在同一水平面從左往右依次是小明家所在的居民樓、小華家所在的小洋房、背靠小華家的一座小山,實踐內(nèi)容為測量小山的高度,家住頂樓的小明在窗戶A處測得小山山頂?shù)囊豢么髽漤敹?/span>E的俯角為10°,小華在自家樓下C處測得小明家窗戶A處的仰角為37°,且測得坡面CD的坡度i12,已知兩家水平距離BC120米,大樹高度DE3米,則小山山頂D到水平面BF的垂直高度約為( )(精確到0.1米,參考數(shù)據(jù)sin37°≈,tan37°≈,sin10°≈tan10°≈

A.55.0B.50.3C.48.1 D.57.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC為對角線,過點DDEDC交直線AB于點E,過點EEHAD于點H,過點BBFAD于點F

1)如圖1,若∠BAD60°,AF3,AH2,求AC的長;

2)如圖2,若BFDH,在AC上取一點G,連接DG、GE,若∠DGE75°,∠CDG45°﹣∠CAB,求證:DGCG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)平面內(nèi),函數(shù)y=(x0,m是常數(shù))的圖象經(jīng)過A(1,4),B(a,b),其中a1.過點Ax軸垂線,垂足為C,過點By軸垂線,垂足為D,連接AD,DC,CB

1)求反比例函數(shù)的解析式;

2)若△ABD的面積為4,求點B的坐標(biāo);

3)求證:DCAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一段6000米的道路由甲乙兩個工程隊負(fù)責(zé)完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用10天.

1)求甲、乙兩工程隊每天各完成多少米?

2)如果甲工程隊每天需工程費7000元,乙工程隊每天需工程費5000元,若甲隊先單獨工作若干天,再由甲乙兩工程隊合作完成剩余的任務(wù),支付工程隊總費用不超過79000元,則兩工程隊最多可以合作施工多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作等腰直角三角形ADE,AD=AE,∠DAE=90.解答下列問題:

(1) 如果AB=AC,∠BAC=90.

①當(dāng)點D在線段BC上時(與點B不重合),如圖乙,線段CE、BD之間的位置關(guān)系為,數(shù)量關(guān)系為.(不用證明)

②當(dāng)點D在線段BC的延長線上時,如圖丙,①中的結(jié)論是否仍然成立,為什么?

(2) 如果AB≠AC,∠BAC≠90,點D在線段BC上運動.

試探究:當(dāng)△ABC滿足一個什么條件時,CE⊥BD(點C、E重合除外)?畫出相應(yīng)的圖形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案