【題目】拋物線上部分點的橫坐標,縱坐標的對應值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

小聰觀察上表,得出下面結論:①拋物線與x軸的一個交點為(3,0); ②函數(shù)的最大值為6;③拋物線的對稱軸是;④在對稱軸左側,yx增大而增大.其中正確有( )

A. ①② B. ①③ C. ①②③ D. ①③

【答案】D

【解析】分析:

由表中數(shù)據(jù)用待定系數(shù)法求得拋物線的解析式,根據(jù)所求解析式由二次函數(shù)的圖象和性質即可判斷上述結論是否正確了.

詳解

將表中所給數(shù)據(jù)選取三對代入可得:

,解得: ,

拋物線的解析式為

解得,

拋物線x軸的一個交點是(3,0),故結論成立;

,

拋物線開口向下對稱軸為直線,在對稱軸的左側,yx的增大而增大,函數(shù)的最大值為,故結論不成立,結論成立,結論成立.

∴上述結論中正確的是①③④.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】以下命題的逆命題為真命題的是( )

A. 對頂角相等,B. a b ,則

C. 同旁內角互補,兩直線平行,D. a 0 , b 0,則

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,某商場計劃購進甲、乙兩種節(jié)能訂共1200只,這兩種節(jié)能燈的進價、售價如下表:

1)如何進貨,進貨款恰好為46000?

2)為確保乙型節(jié)能燈順利暢銷,在(1)的條件下,商家決定對乙型節(jié)能燈進行打折出售,且全部售完后,乙型節(jié)能燈的利潤率為20%,請同乙型節(jié)能燈需打幾折?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車都從A地出發(fā),在路程為360千米的同一道路上駛向B地.甲車先出發(fā)勻速駛向B地.10分鐘后乙車出發(fā),乙車勻速行駛3小時后在途中的配貨站裝貨耗時20分鐘.由于滿載貨物,乙車速度較之前減少了40千米/時.乙車在整個途中共耗時小時,結果與甲車同時到達B地.

1)甲車的速度為  千米/時;

2)求乙車裝貨后行駛的速度;

3)乙車出發(fā)  小時與甲車相距10千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=x+3x軸于點A,交y軸于點B,拋物線y=x2+bx+c經過點A,B.

(1)求拋物線解析式;

(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OAAB于點D,交拋物線于點E,若DE=AD,求m的值;

(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,是對角線上兩點,.

(1)求證:四邊形是平行四邊形.

(2).,,的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“金牛綠道行“活動需要租用、兩種型號的展臺,經前期市場調查發(fā)現(xiàn),元租用的型展臺的數(shù)量與用元租用的型展臺的數(shù)量相同,且每個型展臺的價格比每個型展臺的價格少.

(1)求每個型展臺、每個型展臺的租用價格分別為多少元(列方程解應用題);

(2)現(xiàn)預計投入資金至多,根據(jù)場地需求估計,型展臺必須比型展臺多,型展臺最多可租用多少個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在暑期社會實踐活動中,以每千克08元的價格從批發(fā)市場購進若干千克瓜到市場上去銷售,銷售了40kg西瓜之后,余下的每千克降價04元,全部售完銷售金額與售出西瓜的千克數(shù)之間的關系如圖所示,小明這次賣瓜賺________元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點逆時針旋轉90°,得到△A1B1C1,將△A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2

(1)畫出△A1B1C1和△A2B2C2;

(2)△ABC經旋轉、平移后點A的對應點分別為A1、A2,請寫出點A1、A2的坐標;

(3)Pab)是△ABC的邊AC上一點,△ABC經旋轉、平移后點P的對應點分別為P1,P2,請寫出點P1、P2的坐標.

查看答案和解析>>

同步練習冊答案