12.用配方法解方程x2+2x=4,配方結(jié)果正確的是( 。
A.(x+1)2=4B.(x+2)2=4C.(x+2)2=5D.(x+1)2=5

分析 等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方即可.

解答 解:∵x2+2x=4,
∴x2+2x+1=4+1,
∴(x+1)2=5,
故選D.

點(diǎn)評 本題考查了配方法解一元二次方程,配方法的一般步驟:(1)把常數(shù)項(xiàng)移到等號的右邊;(2)把二次項(xiàng)的系數(shù)化為1;(3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.下列以a、b、c為邊的三角形中,是直角三角形的是( 。
A.a=4,b=5,c=6B.a=5,b=6,c=8C.a=12,b=13,c=5D.a=1,b=1,c=$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.若點(diǎn)(m,2)在y=x2-3x+2的圖象上,則m=0或3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.若直角三角形的兩邊長為a,b,且滿足(a-3)2+|b-4|=0,則該直角三角形的斜邊長為5或4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45

(1)將圖①中的三角板OMN繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),使∠BON=30°,如圖②,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);
(2)將圖①中的三角尺OMN繞點(diǎn)O按每秒15°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第5或17秒時(shí),邊MN恰好與邊CD平行;在第11或23秒時(shí),直線MN恰好與直線CD垂直.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.化簡分式(x-y+$\frac{4xy}{x-y}$)(x+y-$\frac{4xy}{x-y}$)的結(jié)果是${x}^{2}-{y}^{2}+\frac{8x{y}^{2}}{x-y}-\frac{16{x}^{2}{y}^{2}}{(x-y)^{2}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置,如圖所示,其對稱軸x=-1,則下列結(jié)論中,正確的是( 。
A.abc>0B.2a-b=0C.a-b+c>0D.3a+c<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.下列各式中計(jì)算正確的是( 。
A.$\sqrt{9}$+$\sqrt{16}$=$\sqrt{9+16}$=5B.$\sqrt{9}$=±3C.-$\sqrt{{{({-9})}^2}}$=9D.$\sqrt{5}$×$\sqrt{3}$=$\sqrt{15}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.在下列實(shí)數(shù)中$\sqrt{5}$、$\frac{22}{7}$、0、$\frac{π}{2}$、$\sqrt{36}$、$\root{3}{9}$、-1.414、$\frac{{\sqrt{2}}}{2}$是分?jǐn)?shù)的有(  )
A.6個(gè)B.4個(gè)C.2個(gè)D.以上均不對

查看答案和解析>>

同步練習(xí)冊答案