【題目】如圖,平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F分別是OB,OD的中點(diǎn).
(1)試說(shuō)明四邊形AECF是平行四邊形.
(2)若AC=8,AB=6.若AC⊥AB,求線段BD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)4
【解析】
(1)在平行四邊形ABCD中,AC與BD互相平分,OA=OC,OB=OD,又E,F為OB,OD的中點(diǎn),所以OE=OF,所以AC與EF互相平分,所以四邊形AECF為平行四邊形;
(2)首先根據(jù)平行四邊形的性質(zhì)可得AO=CO,BO=DO,再利用勾股定理計(jì)算出BO的長(zhǎng),進(jìn)而可得BD的長(zhǎng).
(1)∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵E,F為OB,OD的中點(diǎn),
∴OE=OF,
∴AC與EF互相平分,
∴四邊形AECF為平行四邊形;
(2)∵四邊形ABCD是平行四邊形,
∴AO=CO,BO=DO,
∵AC=8,
∴AO=4,
∵AB=6,AC⊥AB,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷(xiāo)售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷(xiāo)售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷(xiāo)售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門(mén)規(guī)定,這種節(jié)能燈的銷(xiāo)售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初中學(xué)校餐廳為了解學(xué)生對(duì)早餐的要求,隨即抽樣調(diào)查了該校的部分學(xué)生,并根據(jù)其中兩個(gè)單選問(wèn)題的調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表.
學(xué)生能接受的早餐價(jià)格統(tǒng)計(jì)表
價(jià)格分組(單位:元) | 頻數(shù) | 頻率 |
0<x≤2 | 60 | 0.15 |
2<x≤4 | 180 | c |
4<x≤6 | 92 | 0.23 |
6<x≤8 | a | 0.12 |
x>8 | 20 | 0.05 |
合計(jì) | b | 1 |
根據(jù)以上信息解答下列問(wèn)題:
(1)統(tǒng)計(jì)表中,a= ,b= ,c= .
(2)扇形統(tǒng)計(jì)圖中,m的值為 ,“甜”所對(duì)應(yīng)的圓心角的度數(shù)是 .
(3)該餐廳計(jì)劃每天提供早餐2000份,其中咸味大約準(zhǔn)備多少份較好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為所在圓的圓心,∠AOB=90°,點(diǎn)P在上運(yùn)動(dòng)(不與點(diǎn)A,B重合),AP交OB延長(zhǎng)線于點(diǎn)C,CD⊥OP于點(diǎn)D.若OB=2BC=2,則PD的長(zhǎng)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,則經(jīng)過(guò)三點(diǎn)的圓弧所在圓的圓心的坐標(biāo)為__________;點(diǎn)坐標(biāo)為,連接,直線與的位置關(guān)系是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),點(diǎn)P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點(diǎn),已知OQ長(zhǎng)的最大值為,則k的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),對(duì)稱(chēng)軸為x=1,點(diǎn)D與C關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng).
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線上的一點(diǎn),當(dāng)△ABP的面積是8時(shí),求出點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為直線AD下方拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m,當(dāng)m為何值時(shí),△ADM的面積最大?并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條公路環(huán)繞山腳的部分是一段圓弧形狀(O為圓心),過(guò)A,B兩點(diǎn)的切線交于點(diǎn)C,測(cè)得∠C=120°,A,B兩點(diǎn)之間的距離為60m,則這段公路AB的長(zhǎng)度是( )
A.10πmB.20πmC.10πmD.60m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com