【題目】如圖,O為所在圓的圓心,∠AOB=90°,點(diǎn)P在上運(yùn)動(dòng)(不與點(diǎn)A,B重合),AP交OB延長(zhǎng)線于點(diǎn)C,CD⊥OP于點(diǎn)D.若OB=2BC=2,則PD的長(zhǎng)是( )
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
人類會(huì)作圓并且真正了解圓的性質(zhì)是在2000多年前,由我國(guó)的墨子給出圓的概念:“一中同長(zhǎng)也.”.意思說,圓有一個(gè)圓心,圓心到圓周的長(zhǎng)都相等.這個(gè)定義比希臘數(shù)學(xué)家歐幾里得給圓下的定義要早100年.與圓有關(guān)的定理有很多,弦切角定理就是其中之一.
我們把頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.
弦切角定理:弦切角的度數(shù)等于它所夾弧所對(duì)的圓周角度數(shù).
下面是弦切角定理的部分證明過程:
證明:如圖①,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在弦AC上時(shí),容易得到∠CAB=90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對(duì)的圓周角度數(shù).
如圖②,AB與⊙O相切于點(diǎn)A,當(dāng)圓心O在∠BAC的內(nèi)部時(shí),過點(diǎn)A作直徑AD交⊙O于點(diǎn)D,在上任取一點(diǎn)E,連接EC,ED,EA,則∠CED=∠CAD.
…
任務(wù):
(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖③,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在∠BAC的外部時(shí),請(qǐng)寫出弦切角定理的證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使點(diǎn)A與CD邊上的點(diǎn)H重合(H不與C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD周長(zhǎng)為m,△CHG周長(zhǎng)為n,則為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)為(0,),分別以A,B為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,F,直線EF恰好經(jīng)過點(diǎn)D,則點(diǎn)D的坐標(biāo)為( )
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校王老師組織九(1)班同學(xué)開展數(shù)學(xué)活動(dòng),某天帶領(lǐng)同學(xué)們測(cè)量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測(cè)得電線桿頂端A的仰角為30°,在C處測(cè)得電線桿頂端A的仰角為45°,斜坡與地面成60°角,CD=4m,請(qǐng)你根據(jù)這些數(shù)據(jù)求電線桿的高AB.(結(jié)果用根號(hào)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F分別是OB,OD的中點(diǎn).
(1)試說明四邊形AECF是平行四邊形.
(2)若AC=8,AB=6.若AC⊥AB,求線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,點(diǎn)為延長(zhǎng)線上的一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,過兩點(diǎn)分別作的垂線,垂足分別為,連接.
求證:(1)平分;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象上有一動(dòng)點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y=的圖象上運(yùn)動(dòng),tan∠CAB=2,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn)(),與軸交于點(diǎn),拋物線()經(jīng)過,兩點(diǎn),為線段上一點(diǎn),過點(diǎn)作軸交拋物線于點(diǎn).
(1)當(dāng)時(shí),
①求拋物線的關(guān)系式;
②設(shè)點(diǎn)的橫坐標(biāo)為,用含的代數(shù)式表示的長(zhǎng),并求當(dāng)為何值時(shí),?
(2)若長(zhǎng)的最大值為16,試討論關(guān)于的一元二次方程的解的個(gè)數(shù)與的取值范圍的關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com