【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時,函數(shù)圖象過點(diǎn)(﹣1,1)
B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點(diǎn)
C.若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時,y隨x的增大而增大
【答案】D
【解析】解:A、∵當(dāng)a=1,x=﹣1時,y=1+2﹣1=2,∴函數(shù)圖象不經(jīng)過點(diǎn)(﹣1,1),故錯誤;
B、當(dāng)a=﹣2時,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函數(shù)圖象與x軸有兩個交點(diǎn),故錯誤;
C、∵拋物線的對稱軸為直線x=﹣ =1,∴若a>0,則當(dāng)x≥1時,y隨x的增大而增大,故錯誤;
D、∵拋物線的對稱軸為直線x=﹣ =1,∴若a<0,則當(dāng)x≤1時,y隨x的增大而增大,故正確;
所以答案是:D.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面內(nèi)畫一條直線,將△ABC分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫的條數(shù)為( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條寬度都為1的紙條,交叉重疊放在一起,且它們的交角為α,則它們重疊部分(圖中陰影部分)的面積為( )
A.
B.
C.sinα
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們在過去的學(xué)習(xí)中已經(jīng)發(fā)現(xiàn)了如下的運(yùn)算規(guī)律:
(1)15×15=1×2×100+25=225;
(2)25×25=2×3×100+25=625;
(3)35×35=3×4×100+25=1225;
……
按照這種規(guī)律,第n個式子可以表示為
A. n×n=×(+1)×100+25=n2
B. n×n=×(+1)×100+25=n2
C. (n+5)×(n+5)=n×(n+1)×100+25=n2+10n+25
D. (10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P.OF∥BC交AC于點(diǎn)E,交PC于點(diǎn)F,連結(jié)AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)已知半徑為20,AF=15,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個數(shù)是黑球個數(shù)的2倍多40個.從袋中任取一個球是白球的概率是.
(1)求袋中紅球的個數(shù);
(2)求從袋中任取一個球是黑球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探究證明】某班數(shù)學(xué)課題學(xué)習(xí)小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問題,請你給出證明.
(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問題,請你給出證明.
如圖1,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F(xiàn),GH分別交AD,BC于點(diǎn)G,H.求證: = ;
(2)【結(jié)論應(yīng)用】如圖2,在滿足(1)的條件下,又AM⊥BN,點(diǎn)M,N分別在邊BC,CD上,若 = ,則 的值為;
(3)【聯(lián)系拓展】如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點(diǎn)M,N分別在邊BC,AB上,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師在公園道一號購買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)用含x的代數(shù)式表示地面總面積
(2)當(dāng)x=3時,若鋪1m2地磚的平均費(fèi)用為100元, 那么王老師要將全部地面鋪地磚,總費(fèi)用為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com