【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn).設(shè)AM的長為x,則x的取值范圍是______.
【答案】2.4≤x<4
【解析】
根據(jù)勾股定理的逆定理求出△ABC是直角三角形,得出四邊形AEPF是矩形,求出AM=EF=AP,求出AP≥4.8,即可得出答案.
解:連接AP.
∵AB=6,AC=8,BC=10,
∴AB2+AC2=36+64=100,BC2=100,
∴AB2+AC2=BC2,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴∠AEP=∠AFP=∠BAC=90°,
∴四邊形AEPF是矩形,
∴AP=EF,
∵∠BAC=90°,M為EF中點(diǎn),
∴AM=EF=AP,
當(dāng)AP⊥BC時,AP值最小,
此時S△BAC=×6×8=×10×AP,
AP=4.8,
即AP的范圍是AP≥4.8,
∴2AM≥4.8,
∴AM的范圍是AM≥2.4(即x≥2.4)
當(dāng)P和C重合時,AM=4,
∵P和B、C不重合,
∴x<4,
故答案為:2.4≤x<4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O ,交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,連接AD,DE.
(1)求證:D是BC的中點(diǎn)
(2)若DE=3, AD=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC于點(diǎn)E,AC的反向延長線交⊙O于點(diǎn)F.
(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若∠C=30°,⊙O的半徑為6,求弓形AF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系,直線與y軸交于點(diǎn)A,與雙曲線交于點(diǎn).
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)將直線AB平移,使它與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若的面積為6,求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組在數(shù)學(xué)課外活動中,研究三角形和正方形的性質(zhì)時,做了如下探究:
在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B,C重合),
以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1).如圖1,當(dāng)點(diǎn)D在線段BC上時,
①.BC與CF的位置關(guān)系為:________________________________.
②.BC,CD,CF之間的數(shù)量關(guān)系為:_______________________________.
(2).如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,
請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3).如圖3,將圖2中的 AB=AC改變成AB=kAC,正方形ADEF改成矩形ADEF,且AD=kAF,其它條件不變 ,猜想線段BD與CF之間的關(guān)系,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:有這樣一個問題:關(guān)于的一元二次方程有兩個不相等的且非零的實(shí)數(shù)根探究,,滿足的條件.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:①設(shè)一元二次方程對應(yīng)的二次函數(shù)為;
②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中,,滿足的條件,列表如下:
方程根的幾何意義:
方程兩根的情況 | 對應(yīng)的二次函數(shù)的大致圖象 | ,,滿足的條件 |
方程有兩個不相等的負(fù)實(shí)根 | ||
____________ | ||
方程有兩個不相等的正實(shí)根 | ____________ | ____________ |
(1)參考小明的做法,把上述表格補(bǔ)充完整;
(2)若一元二次方程有一個負(fù)實(shí)根,一個正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三年級進(jìn)行女子800米測試,甲、乙兩名同學(xué)同時起跑,甲同學(xué)先以a米/秒的速度勻速跑,一段時間后提高速度,以米/秒的速度勻速跑,b秒到達(dá)終點(diǎn),乙同學(xué)在第60秒和第140秒時分別減慢了速度,設(shè)甲、乙兩名同學(xué)所的路程為s(米),乙同學(xué)所用的時間為t(秒),s與t之間的函數(shù)圖象如圖所示.
(1)乙同學(xué)起跑的速度為______米/秒;
(2)求a、b的值;
(3)當(dāng)乙同學(xué)領(lǐng)先甲同學(xué)60米時,直接寫出t的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)初二年級數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過程如下,請將有關(guān)問題補(bǔ)充完整.
收集數(shù)據(jù):隨機(jī)抽取甲乙兩所學(xué)校的20名學(xué)生的數(shù)學(xué)成績進(jìn)行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
經(jīng)統(tǒng)計,表格中m的值是 .
得出結(jié)論:
a若甲學(xué)校有400名初二學(xué)生,估計這次考試成績80分以上人數(shù)為 .
b可以推斷出 學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為 .(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com