【題目】如圖,在平行四邊形中,對(duì)角線、相交于,,、、分別是、的中點(diǎn),下列結(jié)論:

;;平分;⑤四邊形是菱形.

其中正確的是(  )

A.①②③B.①③④C.①②D.②③

【答案】B

【解析】

由平行四邊形的性質(zhì)可得OBBC,由等腰三角形的性質(zhì)可判斷①正確,由直角三角形的性質(zhì)和三角形中位線定理可判斷②錯(cuò)誤,通過(guò)證四邊形BGFE是平行四邊形,可判斷③正確,由平行線的性質(zhì)和等腰三角形的性質(zhì)可判斷④正確,由∠BAC≠30°可判斷⑤錯(cuò)誤.

解:∵四邊形ABCD是平行四邊形
BODOBD,ADBC,ABCD,ABBC,
又∵BD2AD,
OBBCODDA,且點(diǎn)EOC中點(diǎn),
BEAC,故①正確,
EF分別是OC、OD的中點(diǎn),
EFCDEFCD,
∵點(diǎn)GRtABE斜邊AB上的中點(diǎn),
GEABAGBG
EGEFAGBG,無(wú)法證明GEGF,故②錯(cuò)誤,
BGEF,ABCDEF
∴四邊形BGFE是平行四邊形,
GFBE,且BGEFGEGE,
∴△BGE≌△FEGSSS)故③正確
EFCDAB
∴∠BAC=∠ACD=∠AEF,
AGGE,
∴∠GAE=∠AEG
∴∠AEG=∠AEF,
AE平分∠GEF,故④正確,
若四邊形BEFG是菱形
BEBGAB,
∴∠BAC30°
與題意不符合,故⑤錯(cuò)誤
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖某水平地面上建筑物的高度為AB在點(diǎn)D和點(diǎn)F處分別豎立高是2米的標(biāo)桿CDEF,兩標(biāo)桿相隔52,并且建筑物AB,標(biāo)桿CDEF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點(diǎn)G,G處測(cè)得建筑物頂端A和標(biāo)桿頂端C在同一條直線上從標(biāo)桿FE后退4米到點(diǎn)H,H處測(cè)得建筑物頂端A和標(biāo)桿頂端E在同一條直線上求建筑物的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+3x+c經(jīng)過(guò)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;

(2)若點(diǎn)P在第一象限的拋物線上,且點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)P向x軸作垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為m,求m與t之間的函數(shù)關(guān)系式,并求出m的最大值;

(3)在x軸上是否存在點(diǎn)E,使以點(diǎn)B,C,E為頂點(diǎn)的三角形為等腰三角形?如果存在,直接寫(xiě)出E點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】第二屆全國(guó)青年運(yùn)動(dòng)會(huì)將于20198月在太原開(kāi)幕,這是山西歷史上第一次舉辦全國(guó)大型綜合性運(yùn)動(dòng)會(huì),必將推動(dòng)我市全民健康理念的提高.某體育用品商店近期購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)衫各50件,甲種用了2000元,乙種用了2400元.商店將甲種運(yùn)動(dòng)衫的銷(xiāo)售單價(jià)定為60元,乙種運(yùn)動(dòng)衫的銷(xiāo)售單價(jià)定為88元.該店銷(xiāo)售一段時(shí)間后發(fā)現(xiàn),甲種運(yùn)動(dòng)衫的銷(xiāo)售不理想,于是將余下的運(yùn)動(dòng)衫按照七折銷(xiāo)售;而乙種運(yùn)動(dòng)衫的銷(xiāo)售價(jià)格不變.商店售完這兩種運(yùn)動(dòng)衫至少可獲利2460元,求甲種運(yùn)動(dòng)衫按原價(jià)銷(xiāo)售件數(shù)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AD是△ABC的角平分線,DEDF分別是△ABD和△ACD的高。求證:AD垂直平分EF。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,DBC的中點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)AAFBCBE的延長(zhǎng)線于點(diǎn)F.

1)求證:△AEF≌△DEB;

2)求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一張長(zhǎng)20cm、寬12cm的矩形紙板,將紙板四個(gè)角各剪去一個(gè)邊長(zhǎng)為cm的正方形,然后將四周突出部分折起,可制成一個(gè)無(wú)蓋紙盒.

1)這個(gè)無(wú)蓋紙盒的長(zhǎng)為   cm,寬為   cm;(用含x的式子表示)

2)若要制成一個(gè)底面積是180m2的無(wú)蓋長(zhǎng)方體紙盒,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:

AEB的度數(shù)為______;

線段ADBE之間的數(shù)量關(guān)系為______

(2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點(diǎn)AD,E在同一直線上,CM為△DCEDE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CMAE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y2x+4與兩坐標(biāo)軸分別交于A,B兩點(diǎn).

1)若一次函數(shù)y=﹣x+m與直線AB的交點(diǎn)在第二象限,求m的取值范圍;

2)若My軸上一點(diǎn),Nx軸上一點(diǎn),直線AB上是否存在兩點(diǎn)P,Q,使得以MN,P,Q四點(diǎn)為頂點(diǎn)的四邊形是正方形.若存在,求出M,N兩點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案