【題目】甲、乙兩人同時從圓形跑道(圓形跑道的總長小于700m)上一直徑兩端A,B相向起跑.第一次相遇時離A100m,第二次相遇時離B60m,則圓形跑道的總長為(

A.240mB.360mC.480mD.600m

【答案】C

【解析】

如圖所示,分兩種情況考慮:第一次相遇在C點,則第二次相遇可在B點下方D點處或其上方點處,根據(jù)兩種情況分別列出方程求解即可.

如圖所示,設圓形跑道總長為2S,又設甲乙速度分別為xy,

1)當甲乙第一次相遇在C點,第二次相遇在B點下方D點處時,

則:……

……

結合①與②得:,解得(舍去),,

,

經檢驗是原方程的解,

∴跑道長為480m;

2)當甲乙第一次相遇在C點,第二次相遇在B點上方點處時,

則:……

……

結合③與④得:,解得(舍去),,

,

經檢驗是原方程的解,

∵圓形跑道的總長小于700m,

∴舍去.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形(頂點是網(wǎng)格線交點的三角形)的頂點的坐標分別是

(1)請在圖中的網(wǎng)格平面內建立平面直角坐標系;

(2)請畫出關于軸對稱的;

(3)請在軸上求作一點,使的周長最小,并寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點E,交AC于點F.DBC邊的中點,M為線段EF上一個動點,則BDM的周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點,的坐標分別為,

1)請在如圖所示的網(wǎng)格平面內作出平面直角坐標系;

2)點軸的距離是   ;

3)請作出關于軸對稱的;

4)寫出點的坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家今年種植的夏黑葡萄喜獲豐收,采摘上市后若干天便全部銷完.小明對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(千克)與上市時間x()之間的函數(shù)關系,已知線段DE表示的函數(shù)關系中,時間每增加1天,日銷售量減少15千克.

(1)16天的日銷售量是 千克.

(2)yx之間的函數(shù)關系式,并寫出x的取值范圍;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天津市奧林匹克中心體育場—“水滴位于天津市西南部的奧林匹克中心內,某校九年級學生由距水滴”10千米的學校出發(fā)前往參觀,一部分同學騎自行車先走,過了20分鐘后,其余同學乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車同學速度的2倍,求騎車同學的速度.

1)設騎車同學的速度為x千米/時,利用速度、時間、路程之間的關系填寫下表.(要求:填上適當?shù)拇鷶?shù)式,完成表格)

速度(千米/時)

所用時間(時)

所走的路程(千米)

騎自行車

x

10

乘汽車

10

2)列出方程(組),并求出問題的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1y=2x+1與直線l2y=mx+4相交于點P1b

(1)b,m的值

(2)垂直于x軸的直線x=a與直線l1l2分別相交于C,D,若線段CD長為2,求a的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=﹣x+的圖象與x軸、y軸分別交于A、B兩點.直線l過點A且垂直于x軸.兩動點D、E分別從A B兩點間時出發(fā)向O點運動(運動到O點停止).運動速度分別是每秒1個單位長度和個單位長度.點G、E關于直線l對稱,GE交AB于點F.設D、E的運動時間為t(s).

(1)當t為何值時,四邊形是菱形?判斷此時△AFG與AGB是否相似,并說明理由;

(2)當△ADF是直角三角形時,求△BEF與△BFG的面積之比.

查看答案和解析>>

同步練習冊答案