【題目】解方程:
(1)3x(x﹣1)=2x﹣2
(2)x2﹣6x+5=0(配方法)
【答案】
(1)解:∵3x(x﹣1)=2(x﹣1),
∴3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,
∴x﹣1=0或3x﹣2=0,
解得:x=1或x=
(2)解:∵x2﹣6x=﹣5,
∴x2﹣6x+9=﹣5+9,即(x﹣3)2=4,
∴x﹣3=2或x﹣3=﹣2,
解得:x=5或x=1
【解析】(1)因式分解法求解可得;(2)配方法求解可得.
【考點精析】通過靈活運用配方法和因式分解法,掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,AD=4,點P在邊DC上,且△PAB是直角三角形,請在圖中標出符合題意的點P,并直接寫出PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=8cm,BC=6cm,D為AB中點,點P在AC上從C向A運動,運動速度為2(cm/s);同時,點Q在BC上從B向C運動,設點Q的運動速度為x(cm/s).且設P,Q的運動時間均為t秒,若其中一點先到達終點,則另一個點也將停止運動.
(1)如圖2,當PD∥BC時,請解決下列問題:
①t= ;
②△ADP的形狀為 (按“邊”分類);
③若此時恰好有△BDQ≌△CPQ,請求出點Q運動速度x的值;
(2)當PD與BC不平行時,也有△BDQ與△CPQ全等:
①請求出相應的t與x的值;
②若設∠A=α°,請直接寫出相應的∠DQP的度數(shù)(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)已知:關于的方程.
(1)求證:方程總有兩個實數(shù)根;
(2)如果為正整數(shù),且方程的兩個根均為整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°
(1)作邊AB的垂直平分線交AB于點D,交BC于點E(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)連接AE,求證:AE=2DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某建筑工程隊利用一面墻(墻的長度不限),用40米長的籬笆圍成一個長方形的倉庫.
(1)求長方形的面積是150平方米,求出長方形兩鄰邊的長;
(2)能否圍成面積220平方米的長方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( )
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com