【題目】D為等邊ABC的邊AC上一點(diǎn),E為直線AB上一點(diǎn),CDBE

1)如圖1,求證:ADDE

2)如圖2,DECB于點(diǎn)F

①若DEAC,CF6,求BF的長(zhǎng);

②求證:DFEF

【答案】1)證明見(jiàn)解析;(2)①3;②證明見(jiàn)解析

【解析】

1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,∠A=60°,由CD=BE,利用線段的和差關(guān)系可得AD=AE,即可證明△ADE是等邊三角形,可得AD=DE;(2)①由DEAC可得∠CFD=30°,根據(jù)含30°角的直角三角形的性質(zhì)可求出CD的長(zhǎng),可得BE的長(zhǎng),根據(jù)∠BFE=∠CFD30°,∠E30°,可得BF=BE,即可得答案;②過(guò)點(diǎn)DDGAB,交CB于點(diǎn)G,可得∠CGD=∠ABC60°,∠GDF=∠E,由∠C=60°可證明△CDG是等邊三角形,可得CD=DG,進(jìn)而可得DGBE,利用AAS可證明△GDF≌△BEF,即可得DF=EF.

1)∵△ABC是等邊三角形,

ABAC,∠A60°,

CDBE,

AC=CD=AB-BE,即ADAE,

∴△ADE是等邊三角形,

ADDE;

2)①∵DFAC,

∴∠CDF90°,

∵∠C60°

RtCDF中,∠CFD30°,

CD=CF=×6=3

CDBE,

BE3,

∵∠BFE=∠CFD30°,∠E30°,

BEBF

BF3;

②如圖,過(guò)點(diǎn)DDGAB,交CB于點(diǎn)G

∴∠CGD=∠ABC60°,∠GDF=∠E,

∵∠C60°,

∴△CDG是等邊三角形,

CDDG,

CDBE

DGBE,

在△GDF和△BEF中,,

∴△GDF≌△BEFAAS),

DFEF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)FDE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為了測(cè)量出一垂直水平地面的某高大建筑物AB的高度,一測(cè)量人員在該建筑物附近C處,測(cè)得建筑物頂端A處的仰角大小為45°,隨后沿直線BC向前走了100米后到達(dá)D處,在D處測(cè)得A處的仰角大小為30°,求建筑物AB的高度.(注:結(jié)果保留到0.1,≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)是(2,2),若點(diǎn)Px軸上,且APO是等腰三角形,則點(diǎn)P_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20、如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).

(1)填空:點(diǎn)A關(guān)于X軸對(duì)稱的點(diǎn)的坐標(biāo)是 ___,點(diǎn)B關(guān)于Y軸對(duì)稱的點(diǎn)的坐標(biāo)是

(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△ABC′.請(qǐng)寫出△ABC′的三個(gè)頂點(diǎn)坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB//CD

1)如圖①,若∠ABE=40o,∠BEC=140o,∠ECD=_________o

2)如圖①,試探究∠ABE,∠BEC,∠ECD的關(guān)系,并說(shuō)明理由;

3)如圖②,若CF平分∠ECD,且滿足CFBE,試探究∠ECD,∠ABE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,過(guò)B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過(guò)D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】最近霧霾天氣頻繁,使得空氣凈化器得以暢銷.某商場(chǎng)代理銷售某種空氣凈化器,其進(jìn)價(jià)是500/臺(tái),經(jīng)過(guò)市場(chǎng)銷售后發(fā)現(xiàn),當(dāng)售價(jià)是1000/臺(tái)時(shí),每月可售出50臺(tái),且售價(jià)每降低20,每月就可多售出5臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于600/臺(tái),代理銷售商每月要完成不低于60臺(tái)的銷售任務(wù).

(1)試確定月銷售量y(臺(tái))與售價(jià)x(/臺(tái))之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.

(2)當(dāng)售價(jià)x(/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w()最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案