【題目】一個圓錐的側(cè)面展開圖是半徑為6的半圓,則這個圓錐的底面半徑為(
A.1.5
B.2
C.2.5
D.3

【答案】D
【解析】解:設圓錐的底面半徑是r,半徑為6的半圓的弧長是6π, 則得到2πr=6π,
解得:r=3,
這個圓錐的底面半徑是3.
故選:D.
半徑為6的半圓的弧長是6π,圓錐的底面周長等于側(cè)面展開圖的扇形弧長,因而圓錐的底面周長是6π,然后利用弧長公式計算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(x-1)(x-3)+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB

矩形的三邊AE,EDDB組成,已知河底ED是水平的,ED16mAE8m,拋物線的頂點CED

距離是11m,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標系.

(1)求拋物線的解析式;

(2)已知從某時刻開始的40h內(nèi),水面與河底ED的距離h(單位:m)隨時間t(單位:h)的變化滿足函數(shù)

關系且當水面到頂點C的距離不大于5m時,需禁止船只通行,請通過計算說明:在這一時段內(nèi),需多少小時禁止船只通行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在直角坐標系內(nèi)的位置如圖所示.

(1)分別寫出A、B、C的坐標;

(2)請在這個坐標系內(nèi)畫出A1B1C1,使A1B1C1ABC關于y軸對稱,并寫出B1的坐標;

(3)請在這個坐標系內(nèi)畫出A2B2C2,使A2B2C2ABC關于原點對稱,并寫出A2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標系中,畫出函數(shù)的圖象;

(2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標;

(3)在(2)的條件下,求出AOB的面積;

(4)利用圖象直接寫出:當y<0時,x的取值范圍.

【答案】(1)畫圖見解析;(2)A(﹣2,0)B(0,4);(3)4;(4)x<﹣2.

【解析】試題分析:(1)求得一次函數(shù)y=2x+4x軸、y軸的交點坐標,利用兩點確定一條直線就可以畫出函數(shù)圖象;(2)由(1)即可得結(jié)論;(3)通過交點坐標根據(jù)三角形的面積公式即可求出面積;(4)觀察函數(shù)圖象與x軸的交點就可以得出結(jié)論.

試題解析:(1)當x=0y=4,當y=0時,x=﹣2,則圖象如圖所示

2)由上題可知A﹣20B0,4),

3SAOB=×2×4=4,

4x﹣2

考點:一次函數(shù)圖象與系數(shù)的關系;一次函數(shù)的圖象.

型】解答
結(jié)束】
21

【題目】在社會主義新農(nóng)村建設中,衢州某鄉(xiāng)鎮(zhèn)決定對A、B兩村之間的公路進行改造,并有甲工程隊從A村向B村方向修筑,乙工程隊從B村向A村方向修筑.已知甲工程隊先施工3天,乙工程隊再開始施工.乙工程隊施工幾天后因另有任務提前離開,余下的任務有甲工程隊單獨完成,直到公路修通.下圖是甲乙兩個工程隊修公路的長度y(米)與施工時間x(天)之間的函數(shù)圖象,請根據(jù)圖象所提供的信息解答下列問題:

1)乙工程隊每天修公路多少米?

2)分別求甲、乙工程隊修公路的長度y(米)與施工時間x(天)之間的函數(shù)關系式.

3)若該項工程由甲、乙兩工程隊一直合作施工,需幾天完成?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分別把帶有指針的圓形轉(zhuǎn)盤A、B分成4等份、3等份的扇形區(qū)域,并在每一個小區(qū)域內(nèi)標上數(shù)字(如圖所示).歡歡、樂樂兩個人玩轉(zhuǎn)盤游戲,游戲規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止時,若指針所指兩區(qū)域的數(shù)字之積為奇數(shù),則歡歡勝;若指針所指兩區(qū)域的數(shù)字之積為偶數(shù),則樂樂勝;若有指針落在分割線上,則無效,需重新轉(zhuǎn)動轉(zhuǎn)盤.

(1)試用列表或畫樹狀圖的方法,求歡歡獲勝的概率;

(2)請問這個游戲規(guī)則對歡歡、樂樂雙方公平嗎?試說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點A(﹣1,y1),B(3,y2)是直線y=kx+b(k<0)上的兩點,則y1﹣y20(填“>”或“<”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC中,ACB=90,DBC邊上的中點,DEAB,垂足為點E,過點BBFACDE的延長線于點F,連接CF

1求證:ADCF;

2連接AF,試判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:50°﹣15°30′=

查看答案和解析>>

同步練習冊答案