分析 (1)首先連接OD,由CA=CB,OB=OD,易證得OD∥AC,又由DF是⊙O的切線,即可證得結(jié)論;
(2)首先連接BG,CD,可求得CD的長,然后由AB•CD=2S△ABC=AC•BG,求得BG的長,易證得BG∥EF,即可得cos∠E=cos∠CBG=$\frac{BG}{BC}$.
解答 (1)證明:連接OD,
∵CA=CB,OB=OD,
∴∠A=∠ABC,∠ABC=∠ODB,
∴∠A=∠ODB,
∴OD∥AC,
∵DF是⊙O的切線,
∴OD⊥DF,
∴DF⊥AC.
(2)解:連接BG,CD.
∵BC是直徑,
∴∠BDC=90°,
∵CA=CB=10,
∴AD=BD=$\frac{1}{2}$AB=$\frac{1}{2}$×12=6,
∴CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=8.
∵AB•CD=2S△ABC=AC•BG,
∴BG=$\frac{AB•CD}{AC}$=$\frac{48}{5}$.
∵BG⊥AC,DF⊥AC,
∴BG∥EF.
∴∠E=∠CBG,
∴cos∠E=cos∠CBG=$\frac{BG}{BC}$=$\frac{24}{25}$.
點評 此題考查了切線的性質(zhì)、圓周角定理以及勾股定理.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 10 | C. | 5$\sqrt{3}$ | D. | 10$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com