【題目】如圖,△ABC為任意三角形,以AB、AC為邊分別向外做等邊△ABD和等邊△ACE,連接CD、BE并相交于點P.求證:
(1)CD=BE;
(2)∠BPC=120°.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)得出AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根據(jù)SAS推出△DAC≌△BAE即可;
(2)根據(jù)全等三角形的性質(zhì)得出∠BEA=∠ACD,求出∠BPC=∠ECP+∠PEC=∠ACE+∠AEC,代入求出即可.
試題解析:(1)∵以AB、AC為邊分別向外做等邊△ABD和等邊△ACE,
∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
∴△DAC≌△BAE(SAS),
∴CD=BE;
(2)∵△DAC≌△BAE,
∴∠BEA=∠ACD,
∴∠BPC=∠ECP+∠PEC=∠DCA+∠ACE+∠PEC=∠BEA+∠ACE+∠PEC=∠ACE+∠AEC=60°+60°=120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,AD=8,F是AB的中點,過點F作FE⊥AD,垂足為E,將△AEF沿點A到點B的方向平移,得到△A′E′F′.
(1)求EF的長;
(2)設(shè)P,P′分別是EF,E′F′的中點,當(dāng)點A′與點B重合時,求證四邊形PP′CD是平行四邊形,并求出四邊形PP′CD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線y=﹣x2+bx+c交x軸于另一點C,點D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一點,(不與點A、B重合),過點P作x軸的垂線交x軸于點H,交直線AB于點F,作PG⊥AB于點G.求出△PFG的周長最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點D以外的點M,使得△ABM與△ABD的面積相等?若存在,請求出此時點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB⊥BC,CD⊥BC,垂足分別為B、C,AB=BC,E為BC的中點,且AE⊥BD于F,若CD=4cm,則AB的長度為( 。
A. 4cm B. 8cm C. 9cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰直角△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)求證:△ADC≌△CEB;
(2)求證:AD+BE=DE;
(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于E.則結(jié)論:①BE=EC;②∠EDC=∠ECD;③∠B=∠BDE;④△ABC∽△ACD;⑤△DEC是等邊三角形.其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD的面積為100,P為邊CD上的任一點,E,F分別為線段AP,BP的中點,則圖中陰影部分的總面積為( )
A. 30B. 25C. 22.5D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】華為手機新款上市,十分暢銷.某經(jīng)銷商進價每臺3000元,售價每臺4000 元.一月份銷量為512臺,二、三月份銷量持續(xù)走高,三月份銷量達到800臺.
(1)求二、三月份每月銷量的平均增長率;
(2)根據(jù)市場調(diào)查經(jīng)驗,四月份此款手機銷售情況將不再火爆而是趨于平穩(wěn).若售價不變,四月份銷量將與三月份持平;若降價促銷,每臺每降價50元,月銷量將增加100臺.要使四月份利潤達到90萬元,每臺應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標(biāo);
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com