分析 【問題情境】如下圖②,按照小軍、小俊的證明思路即可解決問題.
【變式探究】如下圖③,借鑒小軍、小俊的證明思路即可解決問題.
【結(jié)論運用】易證BE=BF,過點E作EQ⊥BF,垂足為Q,如下圖④,利用問題情境中的結(jié)論可得PG+PH=EQ,易證EQ=DC,BF=DF,只需求出BF即可.
【遷移拓展】由條件AD•CE=DE•BC聯(lián)想到三角形相似,從而得到∠A=∠ABC,進而補全等腰三角形,△DEM與△CEN的周長之和就可轉(zhuǎn)化為AB+BH,而BH是△ADB的邊AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解決問題.
解答 解:【問題情境】證明:(小軍的方法)連接AP,如圖②
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP+S△ACP,
∴$\frac{1}{2}$AB•CF=$\frac{1}{2}$AB•PD+$\frac{1}{2}$AC•PE.
∵AB=AC,
∴CF=PD+PE.
(小俊的方法)過點P作PG⊥CF,垂足為G,如圖②.
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDP=∠FGP=90°.
∴四邊形PDFG是矩形.
∴DP=FG,∠DPG=90°.
∴∠CGP=90°.
∵PE⊥AC,
∴∠CEP=90°.
∴∠PGC=∠CEP.
∵∠BDP=∠DPG=90°.
∴PG∥AB.
∴∠GPC=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠GPC=∠ECP.
在△PGC和△CEP中,
$\left\{\begin{array}{l}{∠PGC=∠CEP}\\{∠GPC=∠ECP}\\{PC=CP}\end{array}\right.$,
∴△PGC≌△CEP.
∴CG=PE.
∴CF=CG+FG
=PE+PD.
【變式探究】
證明:連接AP,如圖③.
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP-S△ACP,
∴$\frac{1}{2}$AB•CF=$\frac{1}{2}$AB•PD-$\frac{1}{2}$AC•PE.
∵AB=AC,
∴CF=PD-PE.
【結(jié)論運用】過點E作EQ⊥BC,垂足為Q,如圖④,
∵四邊形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=8,CF=3,
∴BF=BC-CF=AD-CF=5.
由折疊可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∵∠C=90°,
∴DC=$\sqrt{D{F}^{2}-C{F}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4.
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC.
∴四邊形EQCD是矩形.
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB.
∴BE=BF.
由問題情境中的結(jié)論可得:PG+PH=EQ.
∴PG+PH=4.
∴PG+PH的值為4.
【遷移拓展】延長AD、BC交于點F,作BH⊥AF,垂足為H,如圖⑤.
∵AD•CE=DE•BC,
∴$\frac{AD}{DE}$=$\frac{BC}{EC}$.
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°.
∴△ADE∽△BCE.
∴∠A=∠CBE.
∴FA=FB.
由問題情境中的結(jié)論可得:ED+EC=BH.
設(shè)DH=xdm,
則AH=AD+DH=(3+x)dm.
∵BH⊥AF,
∴∠BHA=90°.
∴BH2=BD2-DH2=AB2-AH2.
∵AB=2$\sqrt{13}$,AD=3,BD=$\sqrt{37}$,
∴($\sqrt{37}$)2-x2=(2$\sqrt{13}$)2-(3+x)2.
解得:x=1.
∴BH2=BD2-DH2
=37-1=36.
∴BH=6dm.
∴ED+EC=6.
∵∠ADE=∠BCE=90°,
且M、N分別為AE、BE的中點,
∴DM=AM=EM=$\frac{1}{2}$AE,CN=BN=EN=$\frac{1}{2}$BE.
∴△DEM與△CEN的周長之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
=DE+AB+EC
=DE+EC+AB
=6+2$\sqrt{13}$.
∴△DEM與△CEN的周長之和為(6+2$\sqrt{13}$)dm.
點評 本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定、全等三角形的性質(zhì)與判定、相似三角形的性質(zhì)與判定、平行線的性質(zhì)與判定、直角三角形斜邊上的中線等于斜邊的一半、勾股定理等知識,考查了用面積法證明幾何問題,考查了運用已有的經(jīng)驗解決問題的能力,體現(xiàn)了自主探究與合作交流的新理念,是充分體現(xiàn)新課程理念難得的好題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說不清楚 | 9 | 0.06 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
成績 | 頻數(shù) | 頻率 |
優(yōu)秀 | 45 | b |
良好 | a | 0.3 |
合格 | 105 | 0.35 |
不合格 | 60 | c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com