【題目】在矩形ABCD,點(diǎn)EBC,AE=AD,DF⊥AE,垂足為F.

(1)求證:DF=AB;

(2)若∠FDC=30°,AB=4,AD.

【答案】(1)詳見解析;(2)8.

【解析】

1)根據(jù)矩形性質(zhì)得∠AEB=DAF,∠DFA=B,證ΔADFΔEAB,便可;(2)根據(jù)同角的余角相等,∠FDC=DAF=30°,故AD=2DF,可進(jìn)一步求得結(jié)果.

證明:在有矩形ABCD中,

ADBC

∴∠AEB=DAF

又∵DFAE

∴∠DFE=90°

∴∠DFA=B

AD=EA

ΔADFΔEAB

DF=AB

(2)∵∠ADF+FDC=90°,∠DAF+ADF=90°

∴∠FDC=DAF=30°

AD=2DF

DF=AB

AD=2AB=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:對于排好順序的三個數(shù): 稱為數(shù)列.將這個數(shù)列如下式進(jìn)行計(jì)算: ,,所得的三個新數(shù)中,最大的那個數(shù)稱為數(shù)列的“關(guān)聯(lián)數(shù)值”.

例如:對于數(shù)列因?yàn)?/span>所以數(shù)列的“關(guān)聯(lián)數(shù)值”為6.進(jìn)一步發(fā)現(xiàn):當(dāng)改變這三個數(shù)的順序時,所得的數(shù)列都可以按照上述方法求出關(guān)聯(lián)數(shù)值,如:數(shù)列關(guān)聯(lián)數(shù)值0;數(shù)列的“關(guān)聯(lián)數(shù)值”為3...而對于這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,關(guān)聯(lián)數(shù)值"的最大值為6.

(1)數(shù)列的“關(guān)聯(lián)數(shù)值”為_______;

(2)將“”這三個數(shù)按照不同的順序排列,可得到若干個不同的數(shù)列,這些數(shù)列的“關(guān)聯(lián)數(shù)值”的最大值是_______, 取得“關(guān)聯(lián)數(shù)值”的最大值的數(shù)列是______

3)將這三個數(shù)按照不同的順序排列,可得到若干個不同的數(shù)列,這些數(shù)列的關(guān)聯(lián)數(shù)值的最大值為10,求的值,并寫出取得關(guān)聯(lián)數(shù)值最大值的數(shù)列.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司從2014年開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:

2013

2014

2015

2016

投入技改資金(萬元)

2.5

3

4

4.5

產(chǎn)品成本(萬元/件)

7.2

6

4.5

4

1)請你認(rèn)真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;

2)按照這種變化規(guī)律,若2017年已投入資金5萬元.

①預(yù)計(jì)生產(chǎn)成本每件比2016年降低多少萬元?

②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)表示數(shù),、滿足||+||=0;

(1)點(diǎn)A表示的數(shù)為_____;點(diǎn)B表示的數(shù)為_____;

(2)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個單位/秒的速度向左運(yùn)動;同時另一小球乙從點(diǎn)B處以2個單位/秒的速度也向左運(yùn)動,在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動,設(shè)運(yùn)動的時間為t(秒),

①當(dāng)t=1時,甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.

當(dāng)t=3時,甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.

②試探究:甲,乙兩小球到原點(diǎn)的距離可能相等嗎?若不能,請說明理由.若能,請直接寫出甲,乙兩小球到原點(diǎn)的距離相等時經(jīng)歷的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點(diǎn)E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司的特快巴士與普通巴士同時從甲地出發(fā),以各自的速度勻速向乙地行駛,普通巴士到達(dá)乙地后停止,特快巴士到達(dá)乙地停留45分鐘后,按原路以另一速度勻速返回甲地,已知兩輛巴士分別距乙地的路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖所示.求普通巴士到達(dá)乙地時,特快巴士與甲地之間的距離為_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,坡AB的坡比為1:2.4,坡長AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點(diǎn)H、A、T在同一條地平線MN上.

(1)試問坡AB的高BT為多少米?

(2)若某人在坡AB的坡腳A處和中點(diǎn)D處,觀測到建筑物頂部C處的仰角分別為60°30°,試求建筑物的高度CH.(精確到米, ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC中,∠ABC=45°,點(diǎn)E為AC上的一點(diǎn),連接BE,在BC上找一點(diǎn)G,使得AG=AB,AG交BE于K.

(1)若∠ABE=30°,且∠EBC=∠GAC,BK=4,求AC的長度.

(2)如圖2,過點(diǎn)A作DA⊥AE交BE于點(diǎn)D,過D、E分別向AB所在的直線作垂線,垂足分別為點(diǎn)M、N,且NE=AM,若D為BE的中點(diǎn),證明: DG=2AG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD,BE平分,交AD于點(diǎn)E,FBE的中點(diǎn),GBC的中點(diǎn),連按EC,若,,則FG的長為________。

查看答案和解析>>

同步練習(xí)冊答案