【題目】如圖,在ABC中,高ADBE交于點(diǎn)H,∠ABC=45°,BE平分∠ABC,下列結(jié)論:①∠DAC= 22.5°;②BH= 2CE; ③若連結(jié)CH,CHAB;④若CD=1,AH=2;其中正確的有( )

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)

【答案】C

【解析】

由同角的余角相等易得∠DAC=DBH;由等腰三角形三線合一可得EAC中點(diǎn),再證明△ACD≌△BHD,可得BH=AC,即可判斷;由三角形ABC的三條高交于一點(diǎn),可知連接CH,則CHAB;由△ACD≌△BHDDH=CD=1HC=,易證HA=HC=,即可判斷.

∠ABC=45°,BE平分∠ABC,

∴∠CBE=22.5°,

∵∠DAC+ACB=90°,∠CBE+ACB=90°,

∴∠DAC=CBE=22.5°,

正確;

BE平分∠ABC,BEAC

AC=2CE

ADBC,∠ABC=45°,

∴∠BAD=ABC=45°,

AD=BD

在△ACD和△BHD中,

∵∠DAC=DBH,AD=BD,∠ADC=BDH=90°,

∴△ACD≌△BHDASA

AC=BH

BH=2CE

正確;

H為△ABC兩條高的交點(diǎn),

根據(jù)三角形ABC的三條高交于一點(diǎn),可知連接CH,則CHAB,

正確;

如圖,連接CH

∵△ACD≌△BHD

DH=CD=1,

HDDC

∴△CDH為等腰直角三角形,

HC=,∠HCD=45°,

又∵∠ECB=90°-CBE=67.5°,

∴∠HCA=22.5°=HAC

HA=HC=

錯(cuò)誤.

①②③正確,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形,點(diǎn)的中點(diǎn),,交正方形外角的平分線,連接、、,求證:

;

是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,為弦,,

;

過(guò)點(diǎn)作,交點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,且點(diǎn)的坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)軸的負(fù)半軸上,拋物線經(jīng)過(guò)點(diǎn)和點(diǎn)

,的值;

在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn),使得為等腰三角形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的平行線交拋物線于點(diǎn),交于點(diǎn),探究:當(dāng)點(diǎn)在什么位置時(shí),四邊形是平行四邊形,此時(shí),請(qǐng)判斷四邊形的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表為某班學(xué)生成績(jī)的次數(shù)分配表.已知全班共有人,且眾數(shù)為分,中位數(shù)為分,則之值為________

成績(jī)

(分)

次數(shù)

(人)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線I表示一條公路,點(diǎn)A, B表示兩個(gè)村莊.現(xiàn)要在公路l上建一個(gè)加油站P.

(1)加油站PA, B兩個(gè)村莊距離相等,用直尺(無(wú)刻度)和圓規(guī)在圖l中作出P的位置.

(2)若點(diǎn)A,B到直線l的距離分別是1km4km,A,B兩個(gè)村莊之間的距離為5km,加油站PA, B兩個(gè)村莊之間的距離最小,在圖2中作出P的位置(作圖工具不限),最短距離為__ _ km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),延長(zhǎng)于點(diǎn)

求證:四邊形是矩形;

,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開(kāi)設(shè)四門(mén)選修課:樂(lè)器、舞蹈、繪畫(huà)、書(shū)法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門(mén)對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計(jì)圖中,m的值是______

分別求出參加調(diào)查的學(xué)生中選擇繪畫(huà)和書(shū)法的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

該校共有學(xué)生2000人,估計(jì)該校約有多少人選修樂(lè)器課程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABCD中,,,射線AE平分動(dòng)點(diǎn)P的速度沿AD向終點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)PAE于點(diǎn)Q,過(guò)點(diǎn)P,過(guò)點(diǎn)Q,交PM于點(diǎn)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為,四邊形APMQ與四邊形ABCD重疊部分面積為

______用含t的代數(shù)式表示

當(dāng)點(diǎn)M落在CD上時(shí),求t的值.

St之間的函數(shù)關(guān)系式.

如圖2,連結(jié)AM,交PQ于點(diǎn)G,連結(jié)ACBD交于點(diǎn)H,直接寫(xiě)出t為何值時(shí),GH與三角形ABD的一邊平行或共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案