【題目】如圖,在菱形中,,與交于點 ,為延長線上的一點,且,連接分別交,于點 ,,連接,則下列結(jié)論中一定成立的是__________.
①;②與全等的三角形共有5個;③;④由點、、、構(gòu)成的四邊形是菱形
【答案】①④
【解析】
由AAS證明△ABG≌△DEG,得出AG=DG,證出OG是△ACD的中位線,得出OG=CD=AB,①正確;
先證明四邊形ABDE是平行四邊形,證出△ABD、△BCD是等邊三角形,得出AB=BD=AD,因此OD=AG,得出四邊形ABDE是菱形,④正確;
由菱形的性質(zhì)得得出△ABG≌△BDG≌△DEG,由SAS證明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正確;
證出OG是△ABD的中位線,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性質(zhì)和面積關(guān)系得出S四邊形ODGF=S△ABF;③不正確;即可得出結(jié)果.
∵四邊形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ACD的中位線,
∴OG=CD=AB,①正確;
∵AB∥CE,AB=DE,
∴四邊形ABDE是平行四邊形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等邊三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四邊形ABDE是菱形,④正確;
∴AD⊥BE,
由菱形的性質(zhì)得:△ABG≌△BDG≌△DEG,
在△ABG和△DCO中,
,
∴△ABG≌△DCO(SAS),
∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正確;
∵OB=OD,AG=DG,
∴OG是△ABD的中位線,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,
∴△AFG的面積=△OGF的面積的2倍,
又∵△GOD的面積=△AOG的面積=△BOG的面積,
∴S四邊形ODGF=S△ABF;③不正確;
正確的是①④.
故答案為:①④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過原點和點,頂點為,拋物線與拋物線關(guān)于原點對稱.
(1)求拋物線的函數(shù)表達(dá)式及點的坐標(biāo);
(2)已知點、在拋物線上的對應(yīng)點分別為、,的對稱軸交軸于點,則拋物線的對稱軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,點從點出發(fā)以的速度沿折線運(yùn)動,點從點出發(fā)以的速度沿運(yùn)動,兩點同時出發(fā),當(dāng)某一點運(yùn)動到點時,兩點同時停止運(yùn)動設(shè)運(yùn)動時間為的面積為關(guān)于的函數(shù)圖像由兩段組成,如圖2所示.
(1)求的值;
(2)求圖2中圖像段的函數(shù)表達(dá)式;
(3)當(dāng)點運(yùn)動到線段上某一段時,的面積大于當(dāng)點在線段上任意一點時的面積,求的取值范圍.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“普洱茶”是云南有名的特產(chǎn),某網(wǎng)店專門銷售某種品牌的普洱茶,成本為30元/盒,每天銷售(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天該種普洱茶的銷售量不低于240盒,該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出500元給扶貧基金會,當(dāng)銷售單價為多少元時,每天獲取的凈利潤最大,最大凈利潤是多少?(注:凈利潤=總利潤-捐款)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書法是我國的文化瑰寶,研習(xí)書法能培養(yǎng)高雅的品格某校為加強(qiáng)書法教學(xué),了解學(xué)生現(xiàn)有的書寫能力,隨機(jī)抽取了部分學(xué)生進(jìn)行測試,測試結(jié)果分為優(yōu)秀、良好、及格、不及格四個等級,分別用,,,表示,并將測試結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
書寫能力等級測試條形統(tǒng)計圖:
書寫能力等級測試扇形統(tǒng)計圖:
請根據(jù)統(tǒng)計圖中的信息解答以下問題:
(1)本次抽取的學(xué)生共有______人,扇形統(tǒng)計圖中所對應(yīng)扇形的圓心角是_______;
(2)把條形統(tǒng)計圖補(bǔ)充完整;
(3)依次將優(yōu)秀、良好、及格、不及格記為分、分、分、分,則抽取的這部分學(xué)生書寫成績的眾數(shù)是_______,中位數(shù)是_______,平均數(shù)是________;
(4)若該校共有學(xué)生人,請估計一下,書寫能力等級達(dá)到優(yōu)秀的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的與軸交于點,與軸交于點,
(1)求該拋物線的解析式及頂點的坐標(biāo);
(2)若是線段上一動點,過作軸的平行線交拋物線于點,交于點,設(shè)時,的面積為.求關(guān)于的函數(shù)關(guān)系式;若有最大值,請求出的最大值,若沒有,請說明理由;
(3)若是軸上一個動點,過作射線交拋物線于點,隨著點的運(yùn)動,在軸上是否存在這樣的點,使以 、、、為頂點的四邊形為平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年2﹣4月某市出現(xiàn)了200名新冠肺炎患者,市委根據(jù)黨中央的決定,對患者進(jìn)行了免費治療.圖1是該市輕癥、重癥、危重癥三類患者的人數(shù)分布統(tǒng)計圖(不完整),圖2是這三類患者的人均治療費用統(tǒng)計圖.請回答下列問題.
(1)輕癥患者的人數(shù)是多少?
(2)該市為治療危重癥患者共花費多少萬元?
(3)所有患者的平均治療費用是多少萬元?
(4)由于部分輕癥患者康復(fù)出院,為減少病房擁擠,擬對某病房中的A、B、C、D、E五位患者任選兩位轉(zhuǎn)入另一病房,請用樹狀圖法或列表法求出恰好選中B、D兩位患者的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線上有點、、、、,且,,,,分別過點、、、、作直線的垂線,交軸于點、、、、,依次連接、、、、,得到,,,,,則的面積為_______.(用含有正整數(shù)的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)點P的坐標(biāo)為(x,y),當(dāng)x<0時,點P的變換點P′的坐標(biāo)為(﹣x,y);當(dāng)x≥0時,點P的變換點P′的坐標(biāo)為(﹣y,x).
(1)若點A(2,1)的變換點A′在反比例函數(shù)y=的圖象上,則k= ;
(2)若點B(2,4)和它的變換點B'在直線y=ax+b上,則這條直線對應(yīng)的函數(shù)關(guān)系式為 ,∠BOB′的大小是 度.
(3)點P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對角線作正方形PMP'N,設(shè)點P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對角線垂直于x軸時,求m的取值范圍.
(4)拋物線y=(x﹣2)2+n與x軸交于點C,D(點C在點D的左側(cè)),頂點為E,點P在該拋物線上.若點P的變換點P′在拋物線的對稱軸上,且四邊形ECP′D是菱形,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com