【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),把沿軸對(duì)折,點(diǎn)落到點(diǎn)處,過點(diǎn)的拋物線與直線交于點(diǎn)、

1)求直線和拋物線的解析式;

2)在直線上方的拋物線上求一點(diǎn),使面積最大,求出點(diǎn)坐標(biāo);

3)在第一象限內(nèi)的拋物線上,是否存在一點(diǎn),作垂直于軸,垂足為點(diǎn),使得以、為項(xiàng)點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.

【答案】1;(2;(3)存在,

【解析】

(1)由直線可以求出A,B的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式和直線BD的解析式;

(2)先求得點(diǎn)D的坐標(biāo),作EFy軸交直線BDF,設(shè),利用三角形面積公式求得,再利用二次函數(shù)性質(zhì)即可求得答案;

(3)如圖12,分類討論,當(dāng)△BOC∽△MON或△BOC∽△ONM時(shí),由相似三角形的性質(zhì)就可以求出結(jié)論;

(1)∵直線AB,

y=0,則,令,則y=2,

∴點(diǎn)AB的坐標(biāo)分別是:A (-1,0)B(02),

根據(jù)對(duì)折的性質(zhì):點(diǎn)C的坐標(biāo)是:(10) ,

設(shè)直線BD解析式為

B(0,2),C(1,0)代入,得,

解得:,,

∴直線BD解析式為

A(-1,0),B(02)代入,

解得:,

∴拋物線的解析式為;

(2)解方程組得:

∴點(diǎn)D坐標(biāo)為(3,-4) ,

EFy軸交直線BDF

設(shè)

(03)

∴當(dāng)時(shí),三角形面積最大,

此時(shí),點(diǎn)的坐標(biāo)為:;

(3)存在.

∵點(diǎn)BC的坐標(biāo)分別是B (0,2)、C (10),

,

①如圖1所示,

當(dāng)△MON∽△BCO時(shí),

,即,

,

設(shè),則,

代入拋物線的解析式得:

解得:(不合題意,舍去),

∴點(diǎn)M的坐標(biāo)為(1,2)

②如圖2所示,

當(dāng)△MON∽△CBO時(shí),

,即,

MN=ON,

設(shè),則M(b,b)

M(b,b)代入拋物線的解析式得:

解得:(不合題意,舍去),,

∴點(diǎn)M的坐標(biāo)為(),

∴存在這樣的點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

問題情境:已知是正方形的對(duì)角線,將直角三角尺放在正方形.

1)如圖1,使三角尺的直角頂點(diǎn)與點(diǎn)重合,三角尺的一條直角邊交直線于點(diǎn),另一條直角邊交直線于點(diǎn).求證:.

操作發(fā)現(xiàn):

2)如圖2,將三角尺的直角項(xiàng)點(diǎn)放在上,三角尺的一條直角邊交直線于點(diǎn),另一條直角邊交直線于點(diǎn).判斷的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過點(diǎn)ABC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AFBD,連接BF

1)求證:DBC的中點(diǎn);

2)若BAAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D. 點(diǎn)EBC上,EFAB,垂足為F,∠1=2.

(1)試說明DGBC的理由;

(2)如果∠B54°,且∠ACD=35°,求的∠3度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綿陽(yáng)某公司銷售統(tǒng)計(jì)了每個(gè)銷售員在某月的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:

設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時(shí),為不稱職,當(dāng) 時(shí)為基本稱職,當(dāng) 時(shí)為稱職,當(dāng) 時(shí)為優(yōu)秀”.根據(jù)以上信息,解答下列問題:

(1)補(bǔ)全折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)求所有稱職優(yōu)秀的銷售員銷售額的中位數(shù)和眾數(shù);

(3)為了調(diào)動(dòng)銷售員的積極性,銷售部決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的銷售員將獲得獎(jiǎng)勵(lì)。如果要使得所有稱職優(yōu)秀的銷售員的一半人員能獲獎(jiǎng),月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡(jiǎn)述其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn).

(1)分別求出一次函數(shù)與反比例函數(shù)的解析式;

(2)求OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)轉(zhuǎn)盤被分成等分,每一份上各寫有一個(gè)數(shù)字,隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤次,第一次轉(zhuǎn)到的數(shù)字?jǐn)?shù)字為十位數(shù)字,第二次轉(zhuǎn)到的數(shù)字為個(gè)位數(shù)字,次轉(zhuǎn)動(dòng)后組成一個(gè)兩位數(shù)(若指針停在等分線上則重新轉(zhuǎn)一次)

用畫樹狀圖的方法求出轉(zhuǎn)動(dòng)后所有可能出現(xiàn)的兩位數(shù)的個(gè)數(shù).

甲、乙兩人做游戲,約定得到的兩位數(shù)是偶數(shù)時(shí)甲勝,否則乙勝,這個(gè)游戲公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BDAM,垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B60°

1)求證:AM是⊙O的切線;

2)若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件,出廠價(jià)為每件,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):

1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?

2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案