【題目】如圖,在斜坡的頂部有一鐵塔ABBCD的中點(diǎn),CD是水平的,在陽(yáng)光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長(zhǎng)DE=24 m,小明和小華的身高都是1.6 m,同一時(shí)刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長(zhǎng)分別為2 m1 m,那么塔高AB________ m.

【答案】28.8

【解析】

過點(diǎn)DDFAE,如圖,則FB的影子為BD,AF的影子為DE,由于小明和小華的身高都是1.6m,同一時(shí)刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長(zhǎng)分別為2m1m,,然后分別計(jì)算出BFAF,在計(jì)算所以AF+FB即可.

過點(diǎn)DDFAE,如圖:


根據(jù)題意得,即,解得BF=9.6;

,即,解得AF=19.2,
所以AB=AF+FB=19.2+9.6=28.8(m).
故答案是:28.8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結(jié)論有________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+2x+a2,當(dāng)x=m時(shí),函數(shù)值y<0,則當(dāng)x=m+2時(shí),函數(shù)值y( 。

A. 小于0 B. 等于0

C. 大于0 D. 0的大小不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

(1)畫出ABC向下平移4個(gè)單位長(zhǎng)度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是  ;

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是   ;

(3)A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=2x2-4x-6x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.有下列說法:①拋物線的對(duì)稱軸是x=1;A、B兩點(diǎn)之間的距離是4;③△ABC的面積是24;④當(dāng)x<0時(shí),yx的增大而減。渲校f法正確的是_________________.(只需填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某紡織廠生產(chǎn)的產(chǎn)品,原來每件出廠價(jià)為80元,成本為60元.由于在生產(chǎn)過程中平均每生產(chǎn)一件產(chǎn)品有0.5的污水排出,現(xiàn)在為了保護(hù)環(huán)境,需對(duì)污水凈化處理后再排出.已知每處理1污水的費(fèi)用為2元,且每月排污設(shè)備損耗為8000元.設(shè)現(xiàn)在該廠每月生產(chǎn)產(chǎn)品x件,每月純利潤(rùn)y元:

(1)求出y與x的函數(shù)關(guān)系式.(純利潤(rùn)=總收入-總支出)

(2)當(dāng)y=106000時(shí),求該廠在這個(gè)月中生產(chǎn)產(chǎn)品的件數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù),下列說法錯(cuò)誤的是( )

A. 當(dāng)時(shí),的增大而減小

B. 若圖象與軸有交點(diǎn),則

C. 當(dāng)時(shí),不等式的解集是

D. 若將圖象向上平移個(gè)單位,再向左平移個(gè)單位后過點(diǎn),則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)測(cè)量彈跳力的體育器材,如圖所示,豎桿AC、BD的長(zhǎng)度分別為200厘米、300厘米,CD=300厘米.現(xiàn)有一人站在斜桿AB下方的點(diǎn)E處,直立、單手上舉時(shí)中指指尖(點(diǎn)F)到地面的高度為EF,屈膝盡力跳起時(shí),中指指尖剛好觸到斜桿AB上的點(diǎn)G處,此時(shí),就將EGEF的差值y(厘米)作為此人此次的彈跳成績(jī).

(1)設(shè)CEx(厘米),EFa(厘米),求出由xa表示y的計(jì)算公式;

(2)現(xiàn)有一男生,站在某一位置盡力跳起時(shí),剛好觸到斜桿.已知該同學(xué)彈跳時(shí)站的位置為x=150厘米,且a=205厘米.若規(guī)定y≥50,彈跳成績(jī)?yōu)閮?yōu);40≤y<50時(shí),彈跳成績(jī)?yōu)榱迹?/span>30≤y<40時(shí),彈跳成績(jī)?yōu)榧案,那么該生彈跳成?jī)處于什么水平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0).對(duì)于下列命題:①2a+b=0;abc<0;b2﹣4ac>0;8a+c>0.其中正確的有(  )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案