【題目】如圖,△ABC的兩條高BD、CE相交于點O 且OB=OC.則下列結(jié)論:
①△BEC≌△CDB;
②△ABC是等腰三角形;
③AE=AD;
④點O在∠BAC的平分線上,
其中正確的有_____.(填序號)
【答案】①②③④
【解析】
由三角形內(nèi)角和定理可得∠ABC=∠ACB,可得AB=AC;由AAS可證△BEC≌△CDB;可得BE=CD,可得AD=AE;通過證明△AOB≌△AOC,可證點O在∠BAC的平分線上.即可求解.
解:∵OB=OC,
∴∠OBC=∠OCB,
∵銳角△ABC的兩條高BD、CE相交于點O,
∴∠BEC=∠CDB=90°,
∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,
∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形,故②符合題意;
∵∠OBC=∠OCB,∠BDC=∠BEC=90°,且BC=BC,
∴△BEC≌△CDB(AAS),故①符合題意,
∴BE=CD,且AB=AC,
∴AD=AE,故③符合題意;
連接AO并延長交BC于F,
在△AOB和△AOC中,
∴△AOB≌△AOC(SSS).
∴∠BAF=∠CAF,
∴點O在∠BAC的角平分線上,故④符合題意,
故正確的答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助市內(nèi)一名患“白血病”的中學(xué)生,東營市某學(xué)校數(shù)學(xué)社團15名同學(xué)積極捐款,捐款情況如下表所示,下列說法正確的是( )
捐款數(shù)額 | 10 | 20 | 30 | 50 | 100 |
人數(shù) | 2 | 4 | 5 | 3 | 1 |
A. 眾數(shù)是100 B. 中位數(shù)是30 C. 極差是20 D. 平均數(shù)是30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點P.
(1)若∠B=40°,∠AEC=75°,求證:AB=BC;
(2)若∠BAC=90°,AP為△AEC邊EC上中線,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標(biāo);
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=21,BC=13,D是AC邊上一點,BD=12,AD=16.
(1)求證:BD⊥AC.
(2)若E是邊AB上的動點,求線段DE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
(1)說明四邊形ACEF是平行四邊形;
(2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校舉行圖書節(jié)義賣活動,將所售款項捐給其他貧困學(xué)生,在這次義賣活動中,某班級售書情況如下表:
售價 | 元 | 元 | 元 | 元 |
數(shù)目 | 本 | 本 | 本 | 本 |
下列說法正確的是( )
A.該班級所售圖書的總收入是元B.在該班級所傳圖書價格組成的一組數(shù)據(jù)中,中位數(shù)是元
C.在該班級所售圖書價格組成的一組數(shù)據(jù)中,眾數(shù)是元D.在該班級所售圖書價格組成的一組數(shù)據(jù)中,平均數(shù)是元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店用2000元購進一批學(xué)生書包,這批書包進人市場后發(fā)現(xiàn)供不應(yīng)求,商店又購進第二批同樣的書包,且所購數(shù)量是第一批購進數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B(3,2),點B與點C關(guān)于原點O對稱,BA⊥x軸于點A,CD⊥x軸于點D.
(1)求這個反比函數(shù)的表達式;
(2)求△ACD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com