【題目】如圖,拋物線=﹣3與=+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)淪:①無論x取何值,的值總是正數(shù);②2a=1;③當(dāng)x=0時(shí),﹣=4;④2AB=3AC.其中正確結(jié)論是______.(填序號(hào))
【答案】①④
【解析】
利用二次函數(shù)的性質(zhì)得到y2的最小值為1,則可對(duì)①進(jìn)行判斷;把A點(diǎn)坐標(biāo)代入y1=a(x+2)2-3中求出a,則可對(duì)②進(jìn)行判斷;分別計(jì)算x=0時(shí)兩函數(shù)的對(duì)應(yīng)值,再計(jì)算y2-y1的值,則可對(duì)③進(jìn)行判斷;利用拋物線的對(duì)稱性計(jì)算出AB和AC,則可對(duì)④進(jìn)行判斷.
解:∵y2=+1,
∴y2的最小值為1,所以①正確;
把A(1,3)代入y1=a(x+2)2-3得a(1+2)2-3=3,
∴3a=2,所以②錯(cuò)誤;
當(dāng)x=0時(shí),y1=(x+2)2-3=-, y2=+1=,
∴y2-y1=+=,所以③錯(cuò)誤;
拋物線y1=a (x+2)2-3的對(duì)稱軸為直線x=-2,拋物線y2=+1
的對(duì)稱軸為直線x=3,
∴AB=2×3=6,AC=2×2=4,
∴2AB=3AC,所以④正確.
故答案為①④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將沿弦折疊,使折疊后的劣弧恰好經(jīng)過圓心O,連接并延長交于點(diǎn)C,點(diǎn)P是優(yōu)弧上的動(dòng)點(diǎn),連接.
(1)如圖,用尺規(guī)面出折疊后的劣弧所在圓的圓心,并求出的度數(shù);
(2)如圖,若是的切線,,求線段的長;
(3)如圖,連接,過點(diǎn)B作的重線,交的延長線于點(diǎn)D,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《中學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定學(xué)生體質(zhì)健康等級(jí)標(biāo)準(zhǔn)為:90分及以上為優(yōu)秀;80分~89分為良好;60分~79分為及格;59分及以下為不及格. 某校從九年級(jí)學(xué)生中隨機(jī)抽取了的學(xué)生進(jìn)行了體質(zhì)測(cè)試,得分情況如下圖.
(1)在抽取的學(xué)生中不及格人數(shù)所占的百分比是 ,它的圓心角度數(shù)為 度.
(2)小明按以下方法計(jì)算出抽取的學(xué)生平均得分是:. 根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí)判斷小明的計(jì)算是否正確,若不正確,請(qǐng)計(jì)算正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)小組在課外活動(dòng)中,研究了同一坐標(biāo)系中兩個(gè)反比例函數(shù)與 在第一象限圖象的性質(zhì),經(jīng)歷了如下探究過程:
操作猜想:
(1)如圖①,當(dāng),時(shí),在軸的正方向上取一點(diǎn)作軸的平行線交于點(diǎn),交于點(diǎn).當(dāng)時(shí),________,________,________;當(dāng)時(shí),________,________,________;當(dāng)時(shí),猜想________.
數(shù)學(xué)思考:
(2)在軸的正方向上任意取點(diǎn)作軸的平行線,交于點(diǎn)、交于點(diǎn),請(qǐng)用含、的式子表示的值,并利用圖②加以證明.
推廣應(yīng)用:
(3)如圖③,若,,在軸的正方向上分別取點(diǎn)、 作軸的平行線,交于點(diǎn)、,交于點(diǎn)、,是否存在四邊形是正方形?如果存在,求的長和點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點(diǎn),過點(diǎn)E作EF∥AB交BC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:
四邊形DBFE的面積 ,
△EFC的面積 ,
△ADE的面積 .
探究發(fā)現(xiàn)
(2)在(1)中,若,,DE與BC間的距離為.請(qǐng)證明.
拓展遷移
(3)如圖2,□DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?/span>2)中的結(jié)論求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“特色江蘇,美好生活”,第十屆江蘇省園藝博覽會(huì)在揚(yáng)州舉行.圓圓和滿滿同學(xué)分析網(wǎng)上關(guān)于園博會(huì)的信息,發(fā)現(xiàn)最具特色的場館有:揚(yáng)州園,蘇州園,鹽城園,無錫園.他們準(zhǔn)備周日下午去參觀游覽,各自在這四個(gè)園中任選一個(gè),每個(gè)園被選中的可能性相同.
(1)圓圓同學(xué)在四個(gè)備選園中選中揚(yáng)州園的概率是 .
(2)用樹狀圖或列表法求出圓圓和滿滿他們選中同一個(gè)園參觀的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=上一點(diǎn),過A作AB∥x軸,交直線y=-x于點(diǎn)B,點(diǎn)D是x軸上一點(diǎn),連接BD交雙曲線于點(diǎn)C,連接AD,若BC:CD=3:2,△ABD的面積為,tan∠ABD=,則k的值為( )
A. -B. -3C. -2D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com