【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx﹣1交y軸于點(diǎn)P.
(1)過點(diǎn)P作與x軸平行的直線,交拋物線于點(diǎn)Q,PQ=4,求的值;
(2)橫縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).在(1)的條件下,記拋物線與x軸所圍成的封閉區(qū)域(不含邊界)為W.若區(qū)域W內(nèi)恰有4個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
【答案】(1)-4或4;(2)<a≤或﹣1≤a<﹣.
【解析】
(1)根據(jù)題意先求出點(diǎn)Q坐標(biāo),代入解析式進(jìn)行計(jì)算即可求解;
(2)根據(jù)題意分兩種情況討論,利用特殊點(diǎn)進(jìn)行分析計(jì)算即可求解.
解:(1)∵拋物線y=ax2+bx﹣1交y軸于點(diǎn)P,
∴點(diǎn)P(0,﹣1),
∵PQ=4,PQ∥x軸,
∴點(diǎn)Q(4,﹣1),(﹣4,﹣1)
當(dāng)點(diǎn)Q為(4,﹣1),
∴﹣1=16a+4b﹣1,
∴,
當(dāng)點(diǎn)Q(﹣4,﹣1)
∴﹣1=16a﹣4b﹣1,
∴=4;
(2)當(dāng)a>0時(shí),
當(dāng)拋物線過點(diǎn)(2,﹣2)時(shí),a=,
當(dāng)拋物線過點(diǎn)(1,﹣2)時(shí),a=,
∴<a≤;
當(dāng)a<0時(shí),
當(dāng)拋物線過點(diǎn)(2,2)時(shí),a=﹣,
當(dāng)拋物線過點(diǎn)(2,3)時(shí),a=﹣1,
∴﹣1≤a<﹣,
綜上所述:<a≤或﹣1≤a<﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)P為圖形M上任意一點(diǎn),點(diǎn)Q為圖形N上任意一點(diǎn),若點(diǎn)P與點(diǎn)Q之間的距離PQ始終滿足PQ>0,則稱圖形M與圖形N相離.
(1)已知點(diǎn)A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).
①與直線y=3x﹣5相離的點(diǎn)是 ;
②若直線y=3x+b與△ABC相離,求b的取值范圍;
(2)設(shè)直線y=x+3、直線y=﹣x+3及直線y=﹣2圍成的圖形為W,⊙T的半徑為1,圓心T的坐標(biāo)為(t,0),直接寫出⊙T與圖形W相離的t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,直線,所成的角跑到畫板外面去了,你有什么辦法作出這兩條直線所成角的角平分線?
小明的做法是:
(1)如圖2,畫;
(2)以為圓心,任意長為半徑畫圓弧,分別交直線,于點(diǎn),;
(3)連結(jié)并延長交直線于點(diǎn);
請你先完成下面的證明,然后完成第(4)步作圖:
∵
∴( )
∵以為圓心,任意長為半徑畫圓弧,分別交直線,于點(diǎn),
∴
∴
∴
∴以直線,的交點(diǎn)和點(diǎn)、為頂點(diǎn)所構(gòu)成的三角形為等腰三角形( )
根據(jù)上面的推理證明完成第(4)步作圖
(4)請?jiān)趫D2畫板內(nèi)作出“直線,所成的跑到畫板外面去的角”的平分線(畫板內(nèi)的部分),尺規(guī)作出圖形,并保留作圖痕跡.
第(4)步這么作圖的理論依據(jù)是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=BC,∠ABC=90°,將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到線段AD.作射線BD,點(diǎn)C關(guān)于射線BD的對稱點(diǎn)為點(diǎn)E.連接AE,CE.
(1)依題意補(bǔ)全圖形;
(2)若α=20°,直接寫出∠AEC的度數(shù);
(3)寫出一個(gè)α的值,使AE=時(shí),線段CE的長為﹣1,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=2x﹣1的圖象交于A、B兩點(diǎn),已知A(m,﹣3).
(1)求k及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)C是y軸上一點(diǎn),且S△ABC=5,直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+4的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=的圖象的一個(gè)交點(diǎn)為M.
(1)求點(diǎn)A的坐標(biāo);
(2)連接OM,如果△MOA的面積等于2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系xOy中,點(diǎn)E,F分別在x軸的正半軸和y軸的正半軸上.
(1)分別以點(diǎn)A(1,0),B(1,1),C(3,2)為圓心,1為半徑作圓,得到⊙A,⊙B和⊙C,其中是∠EOF的角內(nèi)圓的是 ;
(2)如果以點(diǎn)D(t,2)為圓心,以1為半徑的⊙D為∠EOF的角內(nèi)圓,且與直線y=x有公共點(diǎn),求t的取值范圍;
(3)點(diǎn)M在第一象限內(nèi),如果存在一個(gè)半徑為1且過點(diǎn)P(2,2)的圓為∠EMO的角內(nèi)相切圓,直接寫出∠EOM的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點(diǎn),其中A(1,2)
(1)求這兩個(gè)函數(shù)解析式;
(2)在y軸上求作一點(diǎn)P,使PA+PB的值最小,并直接寫出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為(-1,2)、(1,1).拋物線y=ax2+bx+c(a≠0)與x軸交于C、D兩點(diǎn),點(diǎn)C在點(diǎn)D左側(cè),當(dāng)頂點(diǎn)在線段AB上移動時(shí),點(diǎn)C橫坐標(biāo)的最小值為-2.在拋物線移動過程中,a-b+c的最小值是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com