【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個端點的坐標(biāo)分別為(-1,2)、(1,1).拋物線y=ax2+bx+c(a≠0)與x軸交于C、D兩點,點C在點D左側(cè),當(dāng)頂點在線段AB上移動時,點C橫坐標(biāo)的最小值為-2.在拋物線移動過程中,a-b+c的最小值是____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx﹣1交y軸于點P.
(1)過點P作與x軸平行的直線,交拋物線于點Q,PQ=4,求的值;
(2)橫縱坐標(biāo)都是整數(shù)的點叫做整點.在(1)的條件下,記拋物線與x軸所圍成的封閉區(qū)域(不含邊界)為W.若區(qū)域W內(nèi)恰有4個整點,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
求出每天的銷售利潤元與銷售單價元之間的函數(shù)關(guān)系式;
求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,號樓在號樓的南側(cè),兩樓高度均為樓間距為.冬至日正午,太陽光線與水平面所成的角為.號樓在號樓墻面上的影高為,春分日正午,太陽光線與水平面所成的角為,號樓在號樓墻面上的影高為.已知.
(1)求樓間距;
(2)若號樓共層,層高均為則點位于第幾層? ( 參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),則稱△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請寫出所有的“差角”并說明理由;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作)BD是矩形ABCD的對角線,AB=4,BC=3.將△BAD繞著點B順時針旋轉(zhuǎn)α度(0°<α<360°)得到△BEF,點A、D的對應(yīng)點分別為E、F.若點E落在BD上,如圖①,則DE=______.
(探究)當(dāng)點E落在線段DF上時,CD與BE交于點G.其它條件不變,如圖②.
(1)求證:△ADB≌△EDB;
(2)CG的長為______.
(拓展)連結(jié)CF,在△BAD的旋轉(zhuǎn)過程中,設(shè)△CEF的面積為S,直接寫出S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新冠肺炎疫情期間,市場上防護(hù)口罩出現(xiàn)熱銷.某藥店用元購進(jìn)甲,乙兩種不同型號的口罩共個進(jìn)行銷售,已知購進(jìn)甲種口罩與乙種口罩的費用相同,購進(jìn)甲種口罩單價是乙種口罩單價的倍.
求購進(jìn)的甲,乙兩種口罩的單價各是多少?
若甲,乙兩種口罩的進(jìn)價不變,該藥店計劃用不超過元的資金再次購進(jìn)甲,乙兩種口罩共個,求甲種口罩最多能購進(jìn)多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點,與軸的負(fù)半軸交于點,且.
(1)求一次函數(shù)和的表達(dá)式;
(2)在軸上是否存在一點,使得是以為腰的等腰三角形,若存在,求出點的坐標(biāo);若不存在,請說明理由.
(3)反比例函數(shù)的圖象記為曲線,將向右平移3個單位長度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com