【題目】下面是小明設(shè)計的已知兩線段及一角作三角形的尺規(guī)作圖過程.

已知:線段及∠O .

求作:ABC,使得線段,及∠O分別是它的兩邊和一角.

作法:如圖,

①以點O為圓心,長為半徑畫弧,分別交∠O的兩邊于點M ,N;

②畫一條射線AP,以點A為圓心,長為半徑畫弧,交AP于點B;

③以點B為圓心,MN長為半徑畫弧,與第②步中所畫的弧相交于點D

④畫射線AD;

⑤以點A為圓心,長為半徑畫弧,交AD于點C;

⑥連接BC ,則ABC即為所求作的三角形.

請回答:

1)步驟③得到兩條線段相等,即 = ;

2)∠A=∠O的作圖依據(jù)是

3)小紅說小明的作圖不全面,原因是 .

【答案】1BD,MN; 2)三邊對應(yīng)相等的兩個三角形全等;全等三角形的對應(yīng)角相等;(3)小明沒有對已知中的邊和角的位置關(guān)系分類討論.

【解析】

根據(jù)題意,按步驟解答即可.

1BD,MN;

2)三邊對應(yīng)相等的兩個三角形全等;全等三角形的對應(yīng)角相等;

3)小明沒有對已知中的邊和角的位置關(guān)系分類討論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.

(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?

(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?

(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展經(jīng)典誦讀進校園活動,某校團委組織八年級100名學生進行經(jīng)典誦讀選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表。

組別

分數(shù)段

頻次

頻率

A

60x<70

17

0.17

B

70x<80

30

a

C

80x<90

b

0.45

D

90x<100

8

0.08

請根據(jù)所給信息,解答以下問題:

(1)表中a=___,b=___;

(2)請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);

(3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點FAC的延長線上,且∠CBF=CAB.

(1)求證:直線BF是⊙O的切線;

(2)若AB=5,sinCBF=,BCBF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOB,∠AOB=90°,已知點A(﹣1,﹣1),B在第二象限,OB=拋物線經(jīng)過點AB

(1)求點B的坐標;

(2)求拋物線的對稱軸

(3)如果該拋物線的對稱軸分別和邊AO、BO的延長線交于點C、D設(shè)點E在直線AB,BOEBCD相似時,直接寫出點E的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC.

1)尺規(guī)作圖:過點CAB的垂線交AB于點O.不寫作法,保留作圖痕跡;

2)分別以直線AB,OCx軸,y軸建立平面直角坐標系,使點B,C 均在正半軸上.AB=7.5,OC=4.5,∠A=45°,寫出點B關(guān)于y軸的對稱點D的坐標;

3)在(2)的條件下,求ACD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線ADBC邊于D.以AB上某一點O為圓心作⊙O,使⊙O經(jīng)過點A和點D

1)判斷直線BC⊙O的位置關(guān)系,并說明理由;

2)若AC=3,∠B=30°

⊙O的半徑;

設(shè)⊙OAB邊的另一個交點為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的平分線與的垂直平分線相交于點,,,垂足分別為,,,則的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在RtABC中,C=90°,AD是BAC的角分線.

(1)以AB上的一點O為圓心,AD為弦在圖中作出O.(不寫作法,保留作圖痕跡);

(2)試判斷直線BC與O的位置關(guān)系,并證明你的結(jié)論.

(3)若B=30°,計算SDAC:SABC的值.

查看答案和解析>>

同步練習冊答案