【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過的頂點(diǎn),若點(diǎn)的坐標(biāo)分別為,,點(diǎn)的橫坐標(biāo)和縱坐標(biāo)之和為,則的值為(

A.B.C.D.

【答案】D

【解析】

由已知可設(shè)Cx,7.5-x),根據(jù)平移的性質(zhì)可得D3+x,7.5-x-4),再根據(jù)反比例函數(shù)性質(zhì)得x(7.5-x)=(3+x)(3.5-x),再求k= x7.5-x.

因為點(diǎn)C的橫坐標(biāo)和縱坐標(biāo)之和為7.5,

所以可設(shè)Cx,7.5-x

因為四邊形ABCD是平行四邊形

所以AB平移可得CD,A的對應(yīng)點(diǎn)是D

所以D3+x,7.5-x-4),即D3+x,3.5-x

因為C,D在反比例函數(shù)圖象上

所以x(7.5-x)=(3+x)(3.5-x)

解得x=1.5

所以7.5-x=6

所以k= x7.5-x=9

故答案為:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線yx2+bx+cc0)與x軸交于A、B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且OBOC3,點(diǎn)E為線段BD上的一個動點(diǎn),EFx軸于F

1)求拋物線的解析式;

2)是否存在點(diǎn)E,使ECF為直角三角形?若存在,求點(diǎn)E的坐標(biāo);不存在,請說明理由;

3)連接AC、BC,若點(diǎn)P是拋物線上的一個動點(diǎn),當(dāng)P運(yùn)動到什么位置時,∠PCB=∠ACO,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校隨機(jī)抽取部分學(xué)生就“你是否喜歡網(wǎng)課”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果進(jìn)行統(tǒng)計后,繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.

1)在統(tǒng)計表中,

2)求出扇形統(tǒng)計圖中“喜歡”網(wǎng)課所對應(yīng)扇形的圓心角度數(shù);

3)己知該校共有2 000名學(xué)生,試估計該!胺浅O矚g”網(wǎng)課的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算: +|1-|-2cos30+()-1-(2019-)0

2)解不等式組,并求出它的整數(shù)解,再化簡代數(shù)式,從上述整數(shù)解中選擇一個合適的數(shù),求此代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=k1x+b和反比例函數(shù)的圖象相交于點(diǎn)Pm1n+1),點(diǎn)Q0,a)在函數(shù)y=k1x+b的圖象上,且m,n是關(guān)于x的方程ax23a+1x+2a+1=0的兩個不相等的整數(shù)根(其中a為整數(shù)),求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多肉植物由于體積小、外形萌,近年來受到廣大養(yǎng)花愛好者的青睞.創(chuàng)業(yè)青年小宇利用這個商機(jī),去花卉市場選購各種多肉,了解到甲、乙、丙三種多肉的部分價格如下表.

多肉種類

價格

批發(fā)價(元/株)

零售價(元/株)

1)已知小宇第一次批發(fā)購進(jìn)甲多肉株,乙多肉株,共花費(fèi)元,且甲多肉每株的批發(fā)價比乙多肉低元,求甲多肉、乙多肉每株的批發(fā)價.

2)由于銷量好,第一次多肉全部售完,小宇用第一次的銷售收入再批發(fā)甲、乙、丙三種多肉,且購進(jìn)甲、乙多肉的株數(shù)相等,但乙多肉的批發(fā)價每株比原來降低,甲多肉的批發(fā)價,每株比原來提高

①若他第二次批發(fā)購進(jìn)甲、乙兩種多肉分別花費(fèi)元、元,求的值.

②在的值不變的前提下,小宇把第一次的銷售收入全用于第二次多肉批發(fā),若第二次銷售完這三種多肉所得利潤為元,當(dāng)丙多肉的株數(shù)不少于時,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形中,相交于點(diǎn),過點(diǎn)作射線,點(diǎn)是射線上一動點(diǎn),連接于點(diǎn),以為一邊,作正方形,且點(diǎn)在正方形的內(nèi)部,連接

1)求證:;

2)設(shè),正方形的邊長為,求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;

3)連接,當(dāng)是等腰三角形時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2020年高中招生考試,某中學(xué)對全校九年級學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息,解答下列問題:

1)請將表示成績類別為“中”的條形統(tǒng)計圖補(bǔ)充完整;

2)請將表示成績類別為“優(yōu)”的扇形統(tǒng)計圖補(bǔ)充完整,并計算成績類別為“優(yōu)”的扇形所對應(yīng)的圓心角的度數(shù);

3)學(xué)校九年級共有人參加了這次數(shù)學(xué)考試,估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,By軸上的動點(diǎn),以AB為邊構(gòu)造,使點(diǎn)Cx軸上,BC的中點(diǎn),則PM的最小值為______

查看答案和解析>>

同步練習(xí)冊答案