【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點C,過點F作⊙O的切線交AB的延長線于點D.
(1)已知∠A=α,求∠D的大。ㄓ煤α的式子表示);
(2)取BE的中點M,連接MF,請補全圖形;若∠A=30°,MF=,求⊙O的半徑.
【答案】(1)∠D=90°﹣2α;(2)⊙O的半徑為2.
【解析】
(1)連接OE,OF,如圖,利用等腰三角形的性質(zhì)得到∠DOF=∠DOE.而∠DOE=2∠A,所以∠DOF=2α,再根據(jù)切線的性質(zhì)得∠OFD=90°.從而得到∠D=90°﹣2α;
(2)連接OM,如圖,利用圓周角定理得到∠AEB=90°.再證明OM∥AE得到∠MOB=∠A=30°.而∠DOF=2∠A=60°,所以∠MOF=90°,設(shè)⊙O的半徑為r,利用含30度的直角三角形三邊的關(guān)系得OM=BM=r,然后根據(jù)勾股定理得到即(r)2+r2=()2,再解方程即可得到⊙O的半徑.
解:(1)連接OE,OF,如圖,
∵EF⊥AB,AB是⊙O的直徑,
∴∠DOF=∠DOE.
∵∠DOE=2∠A,∠A=α,
∴∠DOF=2α,
∵FD為⊙O的切線,
∴OF⊥FD.
∴∠OFD=90°.
∴∠D+∠DOF=90°,
∴∠D=90°﹣2α;
(2)連接OM,如圖,
∵AB為⊙O的直徑,
∴O為AB中點,∠AEB=90°.
∵M為BE的中點,
∴OM∥AE,
∵∠A=30°,
∴∠MOB=∠A=30°.
∵∠DOF=2∠A=60°,
∴∠MOF=90°,
設(shè)⊙O的半徑為r,
在Rt△OMB中,BM=OB=r,
OM=BM=r,
在Rt△OMF中,OM2+OF2=MF2.
即(r)2+r2=()2,解得r=2,
即⊙O的半徑為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)“綜合與實踐”小組的同學(xué)把“測量大橋斜拉索頂端到橋面的距離”作為一項課題活動,他們制訂了測量方案,并利用課余時間借助該橋斜拉索完成了實地測量.測量結(jié)果如下表.
項目 | 內(nèi)容 | ||
課題 | 測量斜拉索頂端到橋面的距離 | ||
測量示意圖 | 說明:大橋兩側(cè)一組斜拉索AC,BC相交于點C,分別與橋面交于A,B兩點,且點A,B,C在同一豎直平面內(nèi). | ||
測量數(shù)據(jù) | ∠A的度數(shù) | ∠B的度數(shù) | AB的長度 |
45° | 30° | 240米 | |
… | … |
請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點C到AB的距離.(結(jié)果精確到0.1米)(參考數(shù)據(jù):=1.414,=1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 為等腰直角三角形,∠ACB=90°,點 M 為 AB 邊的中點,點 N 為射線 AC 上一點,連接 BN,過點 C 作 CD⊥BN 于點 D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點 E,若 AB=20,MD=14,則 NE 的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的,兩點,與軸交于點.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)時,的取值范圍;
(3)在軸上找一點使最大,求的最大值及點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象的一個交點為A(﹣1,n)
(1)求反比例函數(shù)y=的表達(dá)式.
(2)若兩函數(shù)圖象的另一交點為B,直接寫出B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只箱子沿著斜面向上運動,箱高AB=1.3cm,當(dāng)BC=2.6m時,點B離地面的距離BE=1m,則此時點A離地面的距離是( )
A.2.2mB.2mC.1.8mD.1.6m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次三項式﹣x2+2x+3.
(1)關(guān)于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2(m為整數(shù))的根為有理數(shù),求m的值;
(2)在平面直角坐標(biāo)系中,直線y=﹣2x+n分別交x,y軸于點A,B,若函數(shù)y=﹣x2+2|x|+3的圖象與線段AB只有一個交點,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形繞點順時針旋轉(zhuǎn)至正方形,連接.
(1)如圖,求證:;
(2)如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉(zhuǎn)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是一幅2018年俄羅斯世界杯的長方形宣傳畫,長為4m,寬為2m.為測量畫上世界杯圖案的面積,現(xiàn)將宣傳畫平鋪在地上,向長方形宣傳畫內(nèi)隨機投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點都是等可能的),經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)骰子落在世界杯圖案中的頻率穩(wěn)定在常數(shù)0.4左右.由此可估計宣傳畫上世界杯圖案的面積為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com