分析 (1)本題首先找出題中的等量關(guān)系即甲種原料不超過360千克,乙種原料不超過290千克,然后列出不等式組并求出它的解集.由此可確定出具體方案.
(2)根據(jù)題意列出W與x之間的函數(shù)關(guān)系式,利用一次函數(shù)的增減性和(1)得到的取值范圍即可求得最大利潤.
解答 解:(1)設(shè)安排生產(chǎn)A種產(chǎn)品x件,則生產(chǎn)B種產(chǎn)品(50-x)件,
根據(jù)題意有:$\left\{\begin{array}{l}{9x+4(50-x)≤360}\\{3x+10(50-x)≤290}\end{array}\right.$,
解得:30≤x≤32,
∵x為整數(shù),
∴x30,31,32,
所以有三種方案:①安排A種產(chǎn)品30件,B種產(chǎn)品20件;
②安排A種產(chǎn)品31件,B種產(chǎn)品19件;
③安排A種產(chǎn)品32件,B種產(chǎn)品18件.
(2)設(shè)安排生產(chǎn)A種產(chǎn)品x件,
那么利潤為:W=700x+1200(50-x)=-500x+60000,
∵k=-500<0,
∴W隨x的增大而減小,
∴當(dāng)x=30時,對應(yīng)方案的利潤最大,W=-500×30+60000=45000,最大利潤為45000元.
∴采用方案①所獲利潤最大,為45000元.
點評 本題考查一次函數(shù)的應(yīng)用,一元一次不等式組的應(yīng)用及最大利潤問題;得到兩種原料的關(guān)系式及總利潤的等量關(guān)系是解決本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com