精英家教網 > 初中數學 > 題目詳情

【題目】如圖:

(1)如果∠1=∠B,那么______________,根據是__________________________;

(2)如果∠3=∠D,那么______________,根據是__________________________;

(3)如果要使BE∥DF,必須∠1=∠_______,根據是_________________________.

【答案】(1)AB;CD;同位角相等,兩直線平行;(2)BE;DF;內錯角相等,兩直線平行;(3)∠D;同位角相等,兩直線平行.

【解析】:(1)如果∠1=B,那么ABCD,根據是同位角相等,兩直線平行;

2)如果∠3=D,那么BEDF根據是內錯角相等,兩直線平行;

3)如果要使BEDF,必須∠1=D根據是同位角相等,兩直線平行.

故答案為:1AB,CD,同位角相等,兩直線平行;2BE,DF,內錯角相等,兩直線平行;3D ,同位角相等,兩直線平行.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】ab=0,則點Pab)在(

A.坐標軸上B.y軸上C.x軸上D.第一象限

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O 的半徑為1,直線CD 經過圓心O,交⊙O C、D 兩點,直徑AB⊥CD, M 是直線CD 上異于點C、O、D 的一個動點,AM 所在的直線交⊙O 于點N, P 是直線CD 上另一點,PMPN

(1)當點 M 在⊙O 內部,如圖①,試判斷 PN 與⊙O 的關系,并寫出證明過程;

(2)當點 M 在⊙O 外部,如圖②,其他條件不變時,(1)的結論是否還成立? 請說明理由;

(3)當點 M 在⊙O 外部,如圖③,∠AMO15°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:已知直線 AB、CD 相交于點 O,COE=90°

1)若∠AOC=36°,求∠BOE 的度數;

2)若∠BODBOC=15,求∠AOE 的度數.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835590144/STEM/dc8ee683cff64dfdb92368e07f9f9b9d.png]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中正確的有( )

延長直線AB ②延長線段AB ③延長射線AB

畫直線AB=5cm ⑤在射線AB上截取線段AC,使AC=5cm

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的個數是(  )

①射線MN與射線NM是同一條射線;

②兩點確定一條直線;

③兩點之間直線最短;

④若2AB=AC,則點BAC的中點

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AOBC邊上的中線,ABAC的“極化值”就等于AO2BO2的值,可記為ABAC=AO2BO2

1)在圖1中,若∠BAC=90°,AB=8,AC=6,AOBC邊上的中線,則ABAC= ,OCOA= ;

2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求ABAC、BABC的值;

3)如圖3,在△ABC中,AB=AC,AOBC邊上的中線,點NAO上,且ON=AO.已知ABAC=14,BNBA=10,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線分別與x軸,y軸相交于A,B兩點,0為坐標原點,A點的坐標為(4,0)

(1)k的值;

(2)過線段AB上一點P(不與端點重合)x軸,y軸的垂線,乖足分別為M,N.當長方形PMON的周長是10時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,A,B的坐標分別為A(a,0),B(b,0),a,

b滿足 |a+2|+=0,C的坐標為(0,3).

(1)a,b的值及S三角形ABC;

(2)若點Mx軸上,S三角形ACMS三角形ABC,試求點M的坐標.

查看答案和解析>>

同步練習冊答案