精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將等邊△ABC繞點C順時針旋轉120°得到△EDC,連接AD,BD.則下列結論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個數是(

A.0
B.1
C.2
D.3

【答案】D
【解析】解:∵將等邊△ABC繞點C順時針旋轉120°得到△EDC,
∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,
∴∠ACD=120°﹣60°=60°,
∴△ACD是等邊三角形,
∴AC=AD,AC=AD=DE=CE,
∴四邊形ACED是菱形,
∵將等邊△ABC繞點C順時針旋轉120°得到△EDC,AC=AD,
∴AB=BC=CD=AD,
∴四邊形ABCD是菱形,
∴BD⊥AC,∴①②③都正確,
故選D.
【考點精析】根據題目的已知條件,利用等邊三角形的性質和菱形的判定方法的相關知識可以得到問題的答案,需要掌握等邊三角形的三個角都相等并且每個角都是60°;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結EC

⑴求∠ECD的度數;

⑵若CE=5,求CB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,E,F分別是AB,AD的中點,DE,BF相交于點G,連接BD,CG.有下列結論:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④SABD= AB2
其中正確的結論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點D、E.

(1)若AC=12,BC=15,求ABD的周長;

(2)若∠B=20°,求∠BAD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一位同學拿了兩塊45°的三角尺△MNK,△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設AC=BC=a.

(1)如圖1,兩個三角尺的重疊部分為△ACM,則重疊部分的面積為 , 周長為;
(2)將圖1中的△MNK繞頂點M逆時針旋轉45°,得到圖2,此時重疊部分的面積為 , 周長為
(3)如果將△MNK繞M旋轉到不同于圖1,圖2的位置,如圖3所示,猜想此時重疊部分的面積為多少?并試著加以驗證.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,E,F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉90°后,得到△ABQ,連接EQ,求證:

(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖中,EB為半圓O的直徑,點A在EB的延長線上,AD切半圓O于點D,BC⊥AD于點C,AB=2,半圓O的半徑為2,則BC的長為(

A.2
B.1
C.1.5
D.0.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.

(1)請找出截面的圓心;(不寫畫法,保留作圖痕跡.)
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道:任意一個有理數與無理數的和為無理數,任意一個不為零的有理數與一個無理數的積為無理數,而零與無理數的積為零.由此可得:如果ax+b=0,其中a、b為有理數,x為無理數,那么a=0且b=0.

運用上述知識,解決下列問題:

(1)如果a-2+b+3=0,其中a、b為有理數,那么a= ,b= ;

(2)如果2+a-1-b=5,其中a、b為有理數,求a+2b的值.

查看答案和解析>>

同步練習冊答案