【題目】如圖,已知ABC∽△ADE,AB30cm,BD18cm,BC20cm,∠BAC75°,∠ABC40°

求:(1)∠ADE和∠AED的度數(shù);

2DE的長.

【答案】(1)ADE=40°,AED =65°;(2)8cm

【解析】

(1)根據(jù)三角形的內(nèi)角和得到∠ACB=180°﹣∠BAC﹣∠ABC=65°,根據(jù)相似三角形的對應(yīng)角相等即可得到結(jié)論

(2)根據(jù)相似三角形的對應(yīng)邊的比相等即可得到結(jié)論

1)∵∠BAC=75°,∠ABC=40°,∴∠ACB=180°﹣∠BAC﹣∠ABC=65°.

∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠ACB=65°;

(2)∵△ABC∽△ADE,∴

AB=30cm,BD=18cm,BC=20cm,∴,∴DE=8(cm).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)絡(luò)中,給出了ABCDEF(網(wǎng)點為網(wǎng)格線的交點)

1)將ABC向左平移兩個單位長度,再向上平移三個單位長度,畫出平移后的圖形A1B2C3;

2)畫出以點O為對稱中心,與DEF成中心對稱的圖形D2E2F2

3)求∠C+E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,1=2,GAD的中點,延長BGACE、 FAB上的一點,CFADH,下列判斷正確的有( )

A.AD是△ABE的角平分線B.BE是△ABDAD上的中線

C.AH為△ABC的角平分線D.CH為△ACDAD上的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOBO,B=30°,點By=的圖象上,求過點A的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(m,-1),

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出不等式x+b>的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABBCCDBC,AB=4,CD=2.P為線段BC上的點,設(shè)BC=m

⑴若m=9,

①若BAP∽△CDP,求線段BP的長;

②若BAP∽△CPD,求線段BP的長;

⑵試求m為何值時,使得BAPCDP相似的點P有且只有2個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明想測量學(xué)校教學(xué)樓的高度,教學(xué)樓AB的后面有一建筑物CD,他測得當(dāng)光線與地面成22°的夾角時,教學(xué)樓在建筑物的墻上留下高2米高的影子CE;而當(dāng)光線與地面成45°的夾角時,教學(xué)樓頂A在地面上的影子F與墻角C13米的距離(點B,F(xiàn),C在同一條直線上),則AE之間的長為_____米.(結(jié)果精確到lm,參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)下棋,甲執(zhí)圓子,乙執(zhí)方子.如圖,棋盤中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示,甲將第4枚圓子放入棋盤后所有棋子構(gòu)成一個軸對稱圖形,甲放的位置是(

A. (-2,1) B. (-1,1) C. (-1,0) D. (-1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方形中,,點和點都是從點出發(fā),點在這個長方形的邊上順時針運動,點在這個長方形的邊上逆時針運動,它們的速度都是每秒1個單位,設(shè)它們的運動時間是

1時,求線段的長;

2)在運動過程中,連接,設(shè)線段和點所經(jīng)過的路線所組成的封閉的圖形面積是,求出的函數(shù)關(guān)系式,并注明的取值范圍.

3)在上一問中,是否存在某個時刻,使得是長方形面積的一半?若存在,求出;若不存在,請說明理由.

4)當(dāng)點在上運動時(不包括點),存不存在某一時刻,使得是直角三角形嗎?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案