【題目】已知關(guān)于x的方程mx2﹣(3m﹣1)x+2m﹣2=0
(1)求證:無論m取任何實數(shù)時,方程恒有實數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點間的距離為2,且拋物線的開口向上時,求此拋物線的解析式;
(3)在坐標系中畫出(2)中的函數(shù)圖象,分析當(dāng)直線y=x+b與(2)中的圖象只有兩個交點時b的取值范圍.
【答案】(1)見解析; (2)所求拋物線的解析式為:y=x2﹣2x;(3)當(dāng)b>﹣時,直線y=x+b與(2)中的圖象只有兩個交點.
【解析】試題分析:(1)二次項系數(shù)m的值不確定,分為m=0,m≠0兩種情況,分別證明方程有實數(shù)根;
(2)設(shè)拋物線與x軸兩交點的橫坐標為x1,x2,則兩交點之間距離為|x1-x2|=2,再與根與系數(shù)關(guān)系的等式結(jié)合變形,可求m的值,從而確定拋物線的解析式;
(3)聯(lián)立方程組,有解時,求出b的取值范圍.
試題解析:
(1)分兩種情況討論.
①當(dāng)m=0時,方程為x﹣2=0,x=2.
∴m=0時,方程有實數(shù)根.
②當(dāng)m≠0時,則一元二次方程的根的判別式
△=[﹣(3m﹣1)]2﹣4m(2m﹣2)
=9m2﹣6m+1﹣8m2+8m=m2+2m+1
=(m+1)2≥0,
∴m≠0時,方程有實數(shù)根.
故無論m取任何實數(shù)時,方程恒有實數(shù)根.
綜合①②可知,m取任何實數(shù),方程mx2﹣(3m﹣1)x+2m﹣2=0恒有實數(shù)根;
(2)設(shè)x1,x2為拋物線y=mx2﹣(3m﹣1)x+2m﹣2與x軸交點的橫坐標.
則有x1+x2= ,x1x2=
由|x1﹣x2|==||,
由|x1﹣x2|=2得||=2,
∴=2或=﹣2
∴m=1或m=﹣
而拋物線開口向上,
∴m=1
∴所求拋物線的解析式為:y=x2﹣2x;
(3)在(2)的條件下,直線y=x+b與拋物線y1,y2組成的圖象只有兩個交點,
聯(lián)立得, ,
∴x2﹣3x﹣b=0,
∴△=9+4b>0,解得b>﹣ ;
當(dāng)b>﹣時,直線y=x+b與(2)中的圖象只有兩個交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的小正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,A,B,C三點的坐標分別為(5,﹣1),(2,﹣5),(2,﹣1).
(1)把△ABC向上平移6個單位后得到△A1B1C1,畫出△A1B1C1;
(2)畫出△A2B2C2,使它與△ABC關(guān)于y軸對稱;
(3)畫出△A3B3C3,使它與△ABC關(guān)于原點中心對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=∠ACB,點D在BC邊所在的直線上,點E在射線AC上,且始終保持∠ADE=∠AED.
(1)如圖1,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度數(shù);
(2)如圖2,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度數(shù);
(3)如圖3,當(dāng)點D在BC邊的延長線上時,猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過A(2,0),B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.
(3)在x軸上是否存在一點P,使△ABP為等腰三角形,若存在,求出P的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形, 點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.
(1) 求證:DE-BF = EF;
(2) 當(dāng)點G為BC邊中點時, 試探究線段EF與GF之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進行計算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
【題型】解答題
【結(jié)束】
25
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:分別與x軸、y軸交于點B、C,且與直線l2:交于點A.
(1)求出點A的坐標
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的解析式
(3)在(2)的條件下,設(shè)P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O(shè)、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在網(wǎng)絡(luò)閱讀成為主流的同時,進實體書店看書買書也成為一種新的時尚,重慶楊家坪某書店打算購進一批網(wǎng)絡(luò)暢銷書籍進行銷售.該書店用12000元購進甲種書籍,用14400元購進乙種書籍,且購進甲乙兩種書籍?dāng)?shù)量相同,甲的進價每本比乙少2元.
(1)求甲乙兩種書籍進價分別每本多少元?
(2)隨著抖音等網(wǎng)絡(luò)視頻軟件的推廣,這個書店很快成為網(wǎng)紅書店,人流量越來越大.甲種書籍按每15元很快銷售一空,書店決定再次購進甲種書籍進行銷售.由于紙張成本增加,甲種書籍第二次比第一次進價每本增加20%,第二次購進甲種書籍總量在第一次購進甲種書籍總量的基礎(chǔ)上増加了a%(a>0),為了讓利于讀者,第二次銷售單價在第一次的基礎(chǔ)上減少了%,結(jié)果第二次全部售完甲種書籍的利潤達到3600元.求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com