如圖梯形ABCD的兩底長(zhǎng)為AD=6,BC=10,中線為EF,且∠B=90°,若P為AB上的一點(diǎn),且PE將梯形ABCD分成面積相同的兩區(qū)域,則△EFP與梯形ABCD的面積比為


  1. A.
    1:6
  2. B.
    1:10
  3. C.
    1:12
  4. D.
    1:16
D
分析:先根據(jù)梯形的中位線定理求出EF的長(zhǎng),再求出梯形ABCD及梯形ADEF的面積,即可求出△EFP的面積進(jìn)而求出△EFP與梯形ABCD的面積比.
解答:∵梯形ABCD的兩底長(zhǎng)為AD=6,BC=10,
∴EF=(AD+BC)=×(6+10)=8,
∴S梯形ABCD=(AD+BC)×AB=×(6+10)×AB=8AB.
S梯形AFED=(AD+EF)×AB=(6+8)×AB=AB,
∴S△EFP=S梯形ABCD-S梯形AFED=4AB-AB=AB,
∴S△EFP:S梯形ABCD=:8=1:16.
故選D.
點(diǎn)評(píng):本題考查學(xué)生是否能夠運(yùn)用梯形的中位線定理把實(shí)際問題進(jìn)行轉(zhuǎn)換求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖梯形ABCD的兩底長(zhǎng)為AD=6,BC=10,中線為EF,且∠B=90°,若P為AB上的一點(diǎn),且PE將梯形ABCD分成面積相同的兩區(qū)域,則△EFP與梯形ABCD的面積比為(  )
A、1:6B、1:10C、1:12D、1:16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《圖形的相似》中考題集(25):24.4 中位線(解析版) 題型:選擇題

如圖梯形ABCD的兩底長(zhǎng)為AD=6,BC=10,中線為EF,且∠B=90°,若P為AB上的一點(diǎn),且PE將梯形ABCD分成面積相同的兩區(qū)域,則△EFP與梯形ABCD的面積比為( )

A.1:6
B.1:10
C.1:12
D.1:16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《圖形的相似》好題集(37):24.4 中位線(解析版) 題型:選擇題

如圖梯形ABCD的兩底長(zhǎng)為AD=6,BC=10,中線為EF,且∠B=90°,若P為AB上的一點(diǎn),且PE將梯形ABCD分成面積相同的兩區(qū)域,則△EFP與梯形ABCD的面積比為( )

A.1:6
B.1:10
C.1:12
D.1:16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年臺(tái)灣省中考數(shù)學(xué)試卷(一)(解析版) 題型:選擇題

(2010•臺(tái)灣)如圖梯形ABCD的兩底長(zhǎng)為AD=6,BC=10,中線為EF,且∠B=90°,若P為AB上的一點(diǎn),且PE將梯形ABCD分成面積相同的兩區(qū)域,則△EFP與梯形ABCD的面積比為( )

A.1:6
B.1:10
C.1:12
D.1:16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:選擇題

(2010•臺(tái)灣)如圖梯形ABCD的兩底長(zhǎng)為AD=6,BC=10,中線為EF,且∠B=90°,若P為AB上的一點(diǎn),且PE將梯形ABCD分成面積相同的兩區(qū)域,則△EFP與梯形ABCD的面積比為( )

A.1:6
B.1:10
C.1:12
D.1:16

查看答案和解析>>

同步練習(xí)冊(cè)答案