【題目】如圖,RtABC中,ACB=90°,AC=BC,P為△ABC內(nèi)部一點(diǎn),且∠APB=BPC=135°

1)求證:△PAB∽△PBC

2)求證:PA=2PC

3)若點(diǎn)P到三角形的邊ABBC,CA的距離分別為h1h2,h3,求證h12=h2·h3

【答案】1)見解析;(2)見解析;(3)見解析.

【解析】

1)結(jié)合題意,易得∠ABC=45°=PBA+PBC,然后由∠APB=BPC=135°即可證明PAB∽△PBC;

2)根據(jù)(1)中PAB∽△PBC,可得,然后由ABC是等腰直角三角形,可得出,易得PA=2PC;

3)過點(diǎn)PPDBCPEACBC、AC于點(diǎn)DE,首先由RtAEPRtCDP得出,即,再根據(jù)PAB∽△PBC可得出,整理即可得到.

解:(1)∵∠ACB=90°,AC=BC,

∴∠ABC=45°=PBA+PBC

又∠APB=135°

∴∠PAB+PBA=45°,

∴∠PBC=PAB

又∵∠APB=BPC=135°,

∴△PAB∽△PBC;

2)∵△PAB∽△PBC

,

RtABC中,AC=BC

,

PA=2PC;

3

過點(diǎn)PPDBCPEACBC、AC于點(diǎn)D,E,

∵∠CPB+APB=135°+135°=270°,

∴∠APC=90°,∴∠EAP+ACP=90°,

又∵∠ACB=ACP+PCD=90°

∴∠EAP=PCD,

RtAEPRtCDP

,即,∴

∵△PAB∽△PBC,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=(xm2+2xm)(m為常數(shù))

1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個(gè)不同的公共點(diǎn);

2)當(dāng)m取什么值時(shí),該函數(shù)的圖象關(guān)于y軸對稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班開展了“讀一本好書”的活動(dòng),班委會(huì)對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類別,每位同學(xué)僅選一項(xiàng).根據(jù)調(diào)査結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類別

 頻數(shù)(人數(shù))

 頻率

 小說

a

0.5

戲劇

4

散文

10

0.25

 其他

6

 合計(jì)

b

1

根據(jù)圖表提供的信息,回答下列問題:

1)直接寫出:a   b   m   ;

2)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請求選取的2人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個(gè)同樣的小正方形,然后折疊成一個(gè)無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,垂直于x軸的直線l分別于函數(shù)y=x-a+1y+x2-2ax的圖像相交于P,Q兩點(diǎn).若平移直線l,可以使P,Q都在x軸的下方,則實(shí)數(shù)a的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn).

(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;

(2)M(m,0)為x軸上一個(gè)動(dòng)點(diǎn),過點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N,

點(diǎn)在線段上運(yùn)動(dòng),若以,為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);

點(diǎn)軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn),中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱,三點(diǎn)為共諧點(diǎn).請直接寫出使得,,三點(diǎn)成為共諧點(diǎn)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店新進(jìn)一種臺燈.這種臺燈的成本價(jià)為每個(gè)30元,經(jīng)調(diào)查發(fā)現(xiàn),這種臺燈每天的銷售量y(單位:個(gè))是銷售單價(jià)x(單位:元)(30≤x≤60)的一次函數(shù).

x

30

35

40

45

50

y

30

25

20

15

10

(1)求銷售量y與銷售單價(jià)x之間的函數(shù)表達(dá)式;

(2)設(shè)這種臺燈每天的銷售利潤為w元.這種臺燈銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課程中心為了了解學(xué)生對開設(shè)的3D打印、木工制作、機(jī)器人和電腦編程四門課程的喜愛程度,隨機(jī)調(diào)查了部分學(xué)生,每人只能選一項(xiàng)最喜愛的課程.圖①是四門課程最喜愛人數(shù)的扇形統(tǒng)計(jì)圖,圖②是四門課程男、女生最喜愛人數(shù)的條形統(tǒng)計(jì)圖.

(1)求圖①中的值,補(bǔ)全圖②中的條形統(tǒng)計(jì)圖,標(biāo)上相應(yīng)的人數(shù);

(2)若該校共有1800名學(xué)生,則該校最喜愛3D打印課程的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線y=x2+bx+c的表達(dá)式;

(2)點(diǎn)D為拋物線對稱軸上一點(diǎn),當(dāng)△BCD是以BC為直角邊的直角三角形時(shí),求點(diǎn)D的坐標(biāo);

(3)點(diǎn)Px軸下方的拋物線上,過點(diǎn)P的直線y=x+m與直線BC交于點(diǎn)E,與y軸交于點(diǎn)F,求PE+EF的最大值.

查看答案和解析>>

同步練習(xí)冊答案