【題目】某商店需要購進甲、乙兩種商品共180件其進價和售價如表:(注:獲利=售價進價)
(1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
【答案】(1)甲種商品購進100件,乙種商品購進80件.(2)有三種購貨方案,見解析,其中獲利最大的是方案一.
【解析】
(1)等量關系為:甲件數(shù)+乙件數(shù)=180;甲總利潤+乙總利潤=1240.
(2)設出所需未知數(shù),甲進價×甲數(shù)量+乙進價×乙數(shù)量<5040;甲總利潤+乙總利潤>1312.
解:(1)設甲種商品應購進x件,乙種商品應購進y件.
根據(jù)題意得:,解得:.
答:甲種商品購進100件,乙種商品購進80件;
(2)設甲種商品購進a件,則乙種商品購進件.根據(jù)題意得:
.
解不等式組,得:.
∵a為非負整數(shù),
∴a取61,62,63
∴相應取119,118,117
方案一:甲種商品購進61件,乙種商品購進119件.
方案二:甲種商品購進62件,乙種商品購進118件.
方案三:甲種商品購進63件,乙種商品購進117件.
答:有三種購貨方案,其中獲利最大的是方案一.
故答案為:(1)甲種商品購進100件,乙種商品購進80件.(2)有三種購貨方案,見解析,其中獲利最大的是方案一.
科目:初中數(shù)學 來源: 題型:
【題目】某超市舉行店慶活動,對甲、乙兩種商品實行打折銷售,打折前,購買2件甲商品和3件乙商品需要180元;購買1件甲商品和4件乙商品需要200元,而店慶期間,購買10件甲商品和10件乙商品僅需520元,這比打折前少花多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接“十一”小長假的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋 | 甲 | 乙 |
進價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21700元,且不超過22300元,問該專賣店有幾種進貨方案?
(3)在(2)的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一動點從原點O出發(fā),按向上、向右、向下、向右的方向不斷地移動,每次移動1個單位長度,得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么點A2 019的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,人工噴泉有一個豎直的噴水槍AB,噴水口A距地面2m,噴出水流的運動路線是拋物線. 如果水流的最高點P到噴水槍AB所在直線的距離為1m,且到地面的距離為3.6m,求水流的落地點C到水槍底部B的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAD=90°,AB=AD,CB=CD,一個以點C為頂點的45°角繞點C旋轉,角的兩邊與BA,DA交于點M,N,與BA,DA的延長線交于點E,F,連接AC.
(1)在∠FCE旋轉的過程中,當∠FCA=∠ECA時,如圖1,求證:AE=AF;
(2)在∠FCE旋轉的過程中,當∠FCA≠∠ECA時,如圖2,如果∠B=30°,CB=2,用等式表示線段AE,AF之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-1,3),B(-2,1),C(-3,1).
(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出A1點的坐標及sin∠B1C1A1的值;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標;
(3)若點D為線段BC的中點,直接寫出經(jīng)過(2)的變化后點D的對應點D2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
(3)當點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們都知道,|5(2)|表示5與2之差的絕對值,實際上也可理解為5與2兩數(shù)在數(shù)軸上所對應的兩點之間的距離,試探索:
(1)求|5(2)|=___.
(2)若|x2|=5,則x=___
(3)同理|x+5|+|x2|表示數(shù)軸上有理數(shù)x所對應的點到5和2所對應的兩點距離之和,請你找出所有符合條件的整數(shù)x,使得|x+5|+|x2|=7,這樣的整數(shù)是___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com