科目: 來源: 題型:
【題目】(1)完成下面的證明.
如圖,在四邊形中,,是的平分線.求證:.
證明:是的平分線(已知)
__________________(角平分線的定義)
又(已知)
__________________(等量代換)
(____________________________)
(2)已知線段,是的中點,在直線上,且,畫圖并計算的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸、軸分別交于點D、C,直線AB與軸交于點,與直線CD交于點.
(1)求直線AB的解析式;
(2)點E是射線CD上一動點,過點E作軸,交直線AB于點F,若以、、、為頂點的四邊形是平行四邊形,請求出點E的坐標;
(3)設P是射線CD上一動點,在平面內(nèi)是否存在點Q,使以B、C、P、Q為頂點的四邊形是菱形?若存在,請直接寫出符合條件的點Q的個數(shù)及其中一個點Q的坐標;否則說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(問題背景)
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,點E、F分別是邊BC、CD上的點,且∠EAF=60°,試探究圖中線段BE、EF、FD之間的數(shù)量關系.
小王同學探究此問題的方法是:延長FD到點G,使GD=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應是 .
(探索延伸)
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,點E、F分別是邊BC、CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由.
(學以致用)
如圖3,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是邊AB上一點,當∠DCE=45°,BE=2時,則DE的長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,過直線上一點,作,,若,①你還能求出哪些角的度數(shù)_____________________(至少寫出兩個,直角和平角除外);
②與互余的角有__________,它們的數(shù)量關系是________;由此你得出的結(jié)論是_____________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】三點在數(shù)軸上,點表示的數(shù)是,從點出發(fā)向右平移7個單位長度得到點。
(1)求出點表示的數(shù),畫一條數(shù)軸并在數(shù)軸上標出點和點;
(2)若此數(shù)軸在一張紙上,將紙沿某一條直線對折,此時點與表示數(shù)的點剛好重合,折痕與數(shù)軸有一個交點,求點表示的數(shù)的相反數(shù)(原卷無此問);
(3)在數(shù)軸上有一點,點到點和點的距離之和為11,求點所表示的數(shù);
(4)從初始位置分別以1單位長度和2單位長度的速度同時向左運動,是否存在的值,使秒后點到的距離與點到原點距離相等?若存在請求出的值;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】某文具店準備購進甲、乙兩種文具袋,已知甲文具袋每個的進價比乙每個進價多2元,經(jīng)了解,用120元購進的甲文具袋與用90元購進的乙文具袋的數(shù)量相等.
(1)分別求甲、乙兩種文具袋每個的進價是多少元?
(2)若該文具店用1200元全部購進甲、乙兩種文具袋,設購進甲x個,乙y個.
①求y關于x的關系式.
②甲每個的售價為10元,乙每個的售價為9元,且在進貨時,甲的購進數(shù)量不少于60個,若這批文具袋全部售完可獲利w元,求w關于x的關系式,并說明如何進貨該文具店所獲利潤最大,最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標系中的位置如圖所示,則下列結(jié)論中,正確的是( 。
A. ac<0 B. a+b+c<0 C. b2﹣4ac<0 D. b=8a
查看答案和解析>>
科目: 來源: 題型:
【題目】垃圾分類有利于對垃圾進行分流處理,能有效提高垃圾的資源價值和經(jīng)濟價值,力爭物盡其用,為了了解同學們對垃圾分類相關知識的掌握情況,增強同學們的環(huán)保意識,某校對本校甲、乙兩班各60名學生進行了垃極分類相關知識的測試,并分別隨機抽取了15份成績,整理分析過程如下,請補充完整
(收集數(shù)據(jù))
甲班15名學生測試成績統(tǒng)計如下:(滿分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名學生測試成績統(tǒng)計如下:(滿分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理數(shù)據(jù))
按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù)
組別 班級 | 65.6~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
甲班 | 2 | 2 | 4 | 5 | 1 | 1 |
乙班 | 1 | 1 | a | b | 2 | 0 |
在表中,a= ,b= .
(分析數(shù)據(jù))
(1)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:
班級 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲班 | 80 | x | 80 | 47.6 |
乙班 | 80 | 80 | y | 26.2 |
在表中:x= ,y= .
(2)若規(guī)定得分在80分及以上(含80分)為合格,請估計乙班60名學生中垃圾分類相關知識合格的學生有 人
(3)你認為哪個班的學生掌握垃圾分類相關知識的情況較好,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,連接BC.
(1)求A,B,C三點的坐標;
(2)若點P為線段BC上一點(不與B,C重合),PM∥y軸,且PM交拋物線于點M,交x軸于點N,當△BCM的面積最大時,求△BPN的周長;
(3)在(2)的條件下,當△BCM的面積最大時,在拋物線的對稱軸上存在一點Q,使得△CNQ為直角三角形,求點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com