科目: 來源: 題型:
【題目】下列說法:(1)相反數(shù)是本身的數(shù)是正數(shù);(2)兩數(shù)相減,差小于被減數(shù);(3)絕對值等于它相反數(shù)的數(shù)是負數(shù);(4)倒數(shù)是它本身的數(shù)是1;(5)若,則a=b;(6)沒有最大的正數(shù),但有最大的負整數(shù).其中正確的個數(shù)( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①△ABE≌△ADH;②HE=CE;③H是BF的中點;④AB=HF;其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-10,B點對應(yīng)的數(shù)為90.
(1)請寫出與A,B兩點距離相等的M點對應(yīng)的數(shù);
(2)現(xiàn)在有一只電子螞蟻P從B點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,設(shè)兩只電子螞蟻在數(shù)軸上的C點相遇,求C點對應(yīng)的數(shù)是多少.
(3)若當電子螞蟻P從B點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,求經(jīng)過多長的時間兩只電子螞蟻在數(shù)軸上相距35個單位長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】一名足球守門員練習折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習過程中,守門員離開球門最遠距離是多少米?
(3)守門員全部練習結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①已知△ACB和△DCE為等腰直角三角形,按如圖的位置擺放,直角頂點
C重合.
(1)求證:AD=BE;
(2)將△DCE繞點C旋轉(zhuǎn)得到圖②,點A、D、E在同一直線上時,若CD=,BE=3,
求AB 的長;
(3)將△DCE繞點C順時針旋轉(zhuǎn)得到圖③,若∠CBD=45°,AC=6,BD=3,求BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】你能很快算出嗎?
為了解決這個問題,我們考察個位上的數(shù)為5的正整數(shù)的平方,任意一個個位數(shù)為5的正整數(shù)可寫成10n+5(n為正整數(shù)),即求的值,試分析,2,3……這些簡單情形,從中探索其規(guī)律.
⑴通過計算,探索規(guī)律:
可寫成;
可寫成;
可寫成;
可寫成;………………
可寫成________________________________
可寫成________________________________
⑵根據(jù)以上規(guī)律,試計算=
=
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F分別為邊AD,BC上的點,AE=CF,對角線AC平分∠ECF.
(1)求證:四邊形AECF為菱形.
(2)已知AB=4,BC=8,求菱形AECF的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GE⊥DC于點E,GF⊥BC于點F,連結(jié)AG.
(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;
(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】一天,某交警巡邏車在東西方向的青年路上巡邏,他從崗亭出發(fā),晚上停留在處.規(guī)定向東方向為正,向西方向為負,當天行駛情況記錄如下(單位:千米):
+5,-8,+10,-12,+6,-18,+5,-2.
(1)處在崗亭的什么方向?距離崗亭多遠?
(2)若巡邏車每行駛1千米耗油0.1升,這一天共耗油多少升?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料:
1637 年笛卡兒(R.Descartes,1596 1650)在其《幾何學》中,首次應(yīng)用待定系數(shù)法將 4 次方程分解為兩個 2 次方程求解,并最早給出因式分解定理.
他認為,若一個高于二次的關(guān)于 x 的多項式能被 () 整除,則其一定可以分解為 () 與另外一個整式的乘積,而且令這個多項式的值為 0 時, x = a 是關(guān)于 x 的這個方程的一個根.
例如:多項式 可以分解為 () 與另外一個整式 M 的乘積,即
令時,可知 x =1 為該方程的一個根.
關(guān)于笛卡爾的“待定系數(shù)法”原理,舉例說明如下: 分解因式:
觀察知,顯然 x=1 時,原式 = 0 ,因此原式可分解為 () 與另一個整式的積.
令:,則=,因等式兩邊 x 同次冪的系數(shù)相等,則有:,得,從而
此時,不難發(fā)現(xiàn) x= 1 是方程 的一個根.
根據(jù)以上材料,理解并運用材料提供的方法,解答以下問題:
(1)若 是多項式 的因式,求 a 的值并將多項式分解因式;
(2)若多項式 含有因式及 ,求a+ b 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com