科目: 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知A(2,2)、B(﹣2,0)、C(﹣1,﹣2).
(1)在平面直角坐標(biāo)系中畫出△ABC;
(2)若點(diǎn)D與點(diǎn)C關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為 ;
(3)求△ABC的面積;
(4)已知點(diǎn)P為x軸上一點(diǎn),若S△ABP=5時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料:
情形展示:
情形一:如圖,在中,沿等腰三角形ABC的頂角的平分線折疊,若點(diǎn)B與點(diǎn)C重合,則稱是的“好角”,如圖,在中,先沿的平分線折疊,剪掉重復(fù)部分,再將余下部分沿的平分線折疊,若點(diǎn)與點(diǎn)C重合,則稱是的“好角”.
情形二:如圖,在中,先沿的平分線折疊,剪掉重復(fù)部分,再將余下部分沿的平分線折疊,剪掉重復(fù)部分重復(fù)折疊n次,最終若點(diǎn)與點(diǎn)C重合,則稱是的“好角”,探究發(fā)現(xiàn):不妨設(shè)
如圖,若是的“好角”,則與的數(shù)量關(guān)系是:______.
如圖,若是的“好角”,則與的數(shù)量關(guān)系是:______.
如圖,若是的“好角”,則與的數(shù)量關(guān)系是:______.
應(yīng)用提升:
如果一個(gè)三角形的三個(gè)角分別為,,,我們發(fā)現(xiàn)和的兩個(gè)角都是此三角形的“好角”;如果有一個(gè)三角形,它的三個(gè)角均是此三角形的“好角”,且已知最小的角是,求另外兩個(gè)角的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC 中,點(diǎn) D、E 分別在 BC、AC 上且 BD=CE,AD=DE, ∠C =∠ADE, 則∠B =∠C,試填寫說理過程.
解因?yàn)椤?/span>EDB =∠C+∠DEC( )
即∠ADB+∠ADE =∠C+∠DEC
因?yàn)椤?/span>C =∠ADE( )
所以∠ =∠ (等式性質(zhì))
在△ABD 與△DCE 中,
所以△ABD ≌ △DCE( )
所以∠B =∠C( )
查看答案和解析>>
科目: 來源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,點(diǎn)P到水面OA的距離為,從O、A兩處觀測(cè)P處,仰角分別為,,且,,以O為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系,已知拋物線方程為.
求拋物線方程,并求拋物線上的最高點(diǎn)到水面的距離;
水面上升1m,水面寬多少取,結(jié)果精確到?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AD∥BC,∠A=∠C=50°,線段AD上從左到右依次有兩點(diǎn)E、F(不與A、D重合)
(1)AB與CD是什么位置關(guān)系,并說明理由;
(2)觀察比較∠1、∠2、∠3的大小,并說明你的結(jié)論的正確性;
(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數(shù),判斷BE與AD是何種位置關(guān)系?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,射線OA是第一象限的角平分線,點(diǎn)C(11,5),E,F分別是射線OA和x軸正半軸的動(dòng)點(diǎn),那么FE+FC的最小值是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F分別在邊,AD,CD上,且,BD和EF交于點(diǎn)O,延長(zhǎng)BD至點(diǎn)H,使得,并連接HE,HF.
求證:;
試判斷四邊形BEHF是什么特殊的四邊形,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com