科目: 來(lái)源: 題型:
【題目】一工地計(jì)劃租用甲、乙兩輛車清理淤泥,從運(yùn)輸量來(lái)估算,若租兩車合運(yùn),10天可以完成任務(wù),若甲車的效率是乙車效率的2倍.
甲、乙兩車單獨(dú)完成任務(wù)分別需要多少天?
已知兩車合運(yùn)共需租金65000元,甲車每天的租金比乙車每天的租金多1500元試問:租甲乙車兩車、單獨(dú)租甲車、單獨(dú)租乙車這三種方案中,哪一種租金最少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過(guò)程中,點(diǎn)D到點(diǎn)O的最大距離為_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,兩張等寬的紙條交叉疊放在一起,若重合部分構(gòu)成的四邊形ABCD中,AB=3,AC=2,則BD的長(zhǎng)為________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結(jié)論:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正確的是_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高.得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時(shí),四邊形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述結(jié)論中正確的是( )
A. ②③ B. ②④ C. ①②③ D. ②③④
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】夾在兩條平行線間的正方形ABCD、等邊三角形DEF如圖所示,頂點(diǎn)A、F分別在兩條平行線上.若A、D、F在一條直線上,則∠1與∠2的數(shù)量關(guān)系是( )
A. ∠1+∠2=60° B. ∠2﹣∠1=30° C. ∠1=2∠2. D. ∠1+2∠2=90°
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在任意四邊形ABCD中,AC,BD是對(duì)角線,E、F、G、H分別是線段BD、BC、AC、AD上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過(guò)動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是( )
A. 當(dāng)E,F,G,H是各條線段的中點(diǎn)時(shí),四邊形EFGH為平行四邊形
B. 當(dāng)E,F,G,H是各條線段的中點(diǎn),且AC⊥BD時(shí),四邊形EFGH為矩形
C. 當(dāng)E,F,G,H是各條線段的中點(diǎn),且AB=CD時(shí),四邊形EFGH為菱形
D. 當(dāng)E,F,G,H不是各條線段的中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說(shuō)明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為( 。
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com