科目: 來源: 題型:
【題目】如圖,拋物線經(jīng)過點A(﹣2,0),點B(0,4).
(1)求這條拋物線的表達式;
(2)P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點P的坐標;
(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.
(1)求證:∠DCA=∠EBC;
(2)延長BE交AD于F,求證:AB2=AF·AD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線分別交軸、軸于點、,拋物線過,兩點,點是線段上一動點,過點作軸于點,交拋物線于點.
(1)若拋物線的解析式為,設(shè)其頂點為,其對稱軸交于點.
①求點和點的坐標;
②在拋物線的對稱軸上找一點,使的值最大,請直接寫出點的坐標;
③是否存在點,使四邊形為菱形?并說明理由;
(2)當(dāng)點的橫坐標為1時,是否存在這樣的拋物線,使得以、、為頂點的三角形與相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):
當(dāng)a>0,b>0時:
∵()2=a﹣2+b≥0
∴a+b≥2,當(dāng)且僅當(dāng)a=b時取等號.
請利用上述結(jié)論解決以下問題:
(1)請直接寫出答案:當(dāng)x>0時,x+的最小值為 .當(dāng)x<0時,x+的最大值為 ;
(2)若y=,(x>﹣1),求y的最小值;
(3)如圖,四邊形ABCD的對角線AC、BD相交于點O,△AOB、△COD的面積分別為4和9,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形內(nèi)接于,,對角線為的直徑,與交于點.點為延長線上,且.
(1)證明:;
(2)若,,求的長;
(3)若交于點,連接.證明:為的切線.
查看答案和解析>>
科目: 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點D是AB的中點,過點B作CD的垂線,垂足為點E.
(1)求線段CD的長;
(2)求cos∠ABE的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】泉州市旅游資源豐富,①清源山、②開元寺、③崇武古城三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學(xué)生“五·一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別:A、游三個景區(qū);B,游兩個景區(qū);C,游一個景區(qū):D,不到這三個景區(qū)游玩現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計圖和廟形統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:
(1)八(1)班共有學(xué)生 人在扇形統(tǒng)計圖中,表示“B類別的扇形的圓心角的度數(shù)為 ;
(2)請將條形統(tǒng)計圖補充完整;
(3)若小華、小剛兩名同學(xué),各自從三個最區(qū)中隨機選一個作為5月1日游玩的景區(qū),請用樹狀圖或列表法求他們選中同個景區(qū)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知y=﹣x(x+3﹣a)+1是關(guān)于x的二次函數(shù),當(dāng)1≤x≤5時,如果y在x=1時取得最小值,則實數(shù)a的取值范圍是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com