【題目】
九年級數學興趣小組組織了以“等積變形”為主題的課題研究.
第一學習小組發(fā)現:如圖(1),點A、點B在直線l1上,點C、點D在直線l2上,若l1∥l2,則S△ABC=S△ABD;反之亦成立.
第二學習小組發(fā)現:如圖(2),點P是反比例函數上任意一點,過點P作x軸、y軸的垂線,垂足為M、N,則矩形OMPN的面積為定值|k|.
請利用上述結論解決下列問題:
(1)如圖(3),四邊形ABCD、與四邊形CEFG都是正方形點E在CD上,正方形ABCD邊長為2,則=_________.
(2)如圖(4),點P、Q在反比例函數圖象上,PQ過點O,過P作y軸的平行線交x軸于點H,過Q作x軸的平行線交PH于點G,若=8,則=_________,k=_________.
(3)如圖(5)點P、Q是第一象限的點,且在反比例函數圖象上,過點P作x軸垂線,過點Q作y軸垂線,垂足分別是M、N,試判斷直線PQ與直線MN的位置關系,并說明理由.
【答案】(1)2;(2)2、-4;(3)PQ∥MN
【解析】
(1)根據組合圖形的面積求法得出三角的面積;(2)根據反比例的性質以及三角形的面積的求法進行求法;(3)作PA⊥y軸,QB⊥x軸,垂足為A,B,連接PN,MQ,根據雙曲線的性質進行計算.
解:(1)連接CF,
∵四邊形ABCD與四邊形CEFG都是正方形,
∴CF∥BD,△CBD與△FBD同底等高,
∴S△BDF=S△BDC=S正方形ABCD=2;
故答案為: 2.
(2)設P(x,y),則k=xy,
根據題意,得GQ=-2x,PG=2y,
∴S△PQG=×GQ×PG=8,即(-2x)2y=8,
解得xy=-4,即k=-4,
S△POH=×OH×PH=-xy=2;
故答案為: 2,-4.
(3)PQ∥MN.
理由:作PA⊥y軸,QB⊥x軸,垂足為A,B,連接PN,MQ,
根據雙曲線的性質可知,S矩形AOMP=S矩形BONQ=k,
∴S矩形ANCP=S矩形BMCQ,可知S△NCP=S△MCQ,
∴S△NPQ=S△MPQ,
∴PQ∥MN.
科目:初中數學 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使點A與CD邊上的點H重合(H不與C,D重合),折痕交AD于點E,交BC于點F,邊AB折疊后與邊BC交于點G.設正方形ABCD周長為m,△CHG周長為n,則為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內有一點C,滿足AC=BC,當點A運動時,點C始終在函數y=的圖象上運動,tan∠CAB=2,則k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在⊙O中,OA=AB,OC⊥AB,則下列結論正確的是①AB的長等于圓內接正六邊形的邊長 ②弦AC的長等于圓內接正十二邊形的邊長 ③弧弧④∠BAC=30°
A.①②④B.①③④C.②③④D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三輛汽車經過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.
(1)三輛汽車經過此收費站時,都選擇A通道通過的概率是 ;
(2)求三輛汽車經過此收費站時,至少有兩輛汽車選擇B通道通過的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數與反比例函數的表達式;
(2)當x>0時,比較kx+b與的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與軸交于點(),與軸交于點,拋物線()經過,兩點,為線段上一點,過點作軸交拋物線于點.
(1)當時,
①求拋物線的關系式;
②設點的橫坐標為,用含的代數式表示的長,并求當為何值時,?
(2)若長的最大值為16,試討論關于的一元二次方程的解的個數與的取值范圍的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一次函數y=kx+b與反比例函數y=的圖象交于A(2,4),B(﹣4,n)兩點.
(1)分別求出一次函數與反比例函數的表達式;
(2)過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com