【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若函數(shù)在上單調(diào)遞增,求的取值范圍.
【答案】(1)答案不唯一,具體見解析(2)
【解析】
(1)求,,對參數(shù)分類討論,求出的解的區(qū)間,即可得出結(jié)論;
(2)根據(jù)條件即求在恒成立的取值范圍,求出
,即,分離參數(shù),在恒成立,構(gòu)造函數(shù),只需,通過二次求導(dǎo)判斷的正負(fù),進(jìn)而判斷的單調(diào)性,求出;或,則至少有,,然后求,求出單調(diào)區(qū)間,進(jìn)而求出,解不等式,即可得出結(jié)論.
(1)的定義域?yàn)?/span>,,
當(dāng)時(shí),在上恒成立,
所以在上遞減;
當(dāng)時(shí),令,
當(dāng)時(shí),,當(dāng)時(shí),,
則在上遞減,在上遞增.
(2)
在恒成立,
所以,即
令,則有,
令,則有在上恒成立.
故在上為減函數(shù),
所以在上為減函數(shù),
則,故.
另解令,則至少有.
當(dāng)時(shí),則有,
令,開口向上,對稱軸,
故在上為增函數(shù),
所以在上為增函數(shù),
則,故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線上任意一點(diǎn)P向x軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線與軌跡c交于兩點(diǎn),T為C上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過x軸上的定點(diǎn)?若過定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶計(jì)劃種植萵筍和西紅柿,種植面積不超過畝,投入資金不超過萬元,假設(shè)種植萵筍和西紅柿的產(chǎn)量、成本和售價(jià)如下表:
年產(chǎn)量/畝 | 年種植成本/畝 | 每噸售價(jià) | |
萵筍 | 5噸 | 1萬元 | 0.5萬元 |
西紅柿 | 4.5噸 | 0.5萬元 | 0.4萬元 |
那么,該農(nóng)戶一年種植總利潤(總利潤=總銷售收入-總種植成本)的最大值為____萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線有光學(xué)性質(zhì),即由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出,反之亦然.如圖所示,今有拋物線,一光源在點(diǎn)處,由其發(fā)出的光線沿平行于拋物線的對稱軸的方向射向拋物線上的點(diǎn),反射后,又射向拋物線上的點(diǎn),再反射后又沿平行于拋物線的對稱軸方向射出,途中遇到直線上的點(diǎn),再反射后又射回點(diǎn).設(shè),兩點(diǎn)的坐標(biāo)分別是,.
(1)證明:;
(2)若四邊形是平行四邊形,且點(diǎn)的坐標(biāo)為.求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長,回收價(jià)值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.
(1)若在該市場隨機(jī)選取1個(gè)2018年成交的二手電腦,求其使用時(shí)間在上的概率;
(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,其中(單位:年)表示折舊電腦的使用時(shí)間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.
由散點(diǎn)圖判斷,可采用作為該交易市場折舊電腦平均交易價(jià)格與使用年限的回歸方程,若,,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測在區(qū)間(用時(shí)間組的區(qū)間中點(diǎn)值代表該組的值)上折舊電腦的價(jià)格.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
附:參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2019年的冬令營考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下圖所示:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 35 | 0.350 | |
第3組 | 10 | 0.100 | |
第4組 | 20 | 0.200 | |
第5組 | 30 | 0.300 | |
合計(jì) | 100 | 1.00 |
(1)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(2)在(1)的前提下,高校決定在這6名學(xué)生中,隨機(jī)抽取2名學(xué)生接受A考官進(jìn)行面試,求第4組至少有一名學(xué)生被A考官測試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),,(其中表示a、b中的較大數(shù))為、兩點(diǎn)的“切比雪夫距離”.
(1)若,Q為直線上動(dòng)點(diǎn),求P、Q兩點(diǎn)“切比雪夫距離”的最小值;
(2)定點(diǎn),動(dòng)點(diǎn)滿足,請求出P點(diǎn)所在的曲線所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,已知,且2an+1=an+1(n∈N*).
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項(xiàng)公式;
(2)若T3=21,求S3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com